Brucchietti E. Gli studi intrapresi da Caterina Montagna nella Sabina tiberina. Nuovi elementi per Cures e il suo territorio. In: Armellin P, La storia del territorio di Poggio Mirteto. Un racconto con il contributo di varie discipline. Poggio Mirteto 29 November 2014. 2018. p. 125-136.
Alvino G. Ricerche recenti della Soprintendenza per i beni Archeologici del Lazio nel territorio della provincia di Rieti. In: De Simone M, Formichetti G, Le ricerche archeologiche nel territorio sabino: attività, risultati e prospettive. Atti della giornata di studi. Rieti 11 May 2013. Rieti 2014.
Cavalieri M, Bigliardi G, Lenzi S, Fumo A, Deltenre F, Leporati C. Nuove ricerche archeologiche presso il sito di Cures Sabini: attività, ipotesi e prospettive. In FastiOnline, 8 (http://www.fastionline.org/docs/FOLDER-it-2015-342.pdf).
Patterson H. The middle Tiber Valley in the Late antique and Early Medieval periods: some observation. In: Patterson H, Coarelli F, Mercator Placidissimus; the Tiber Valley in Antiquity. New research in the upper and middle river valley. Roma 27–28 February 2004. 2008. p. 499-532.
Belcastro G, Rastelli E, Mariotti V, Consiglio C, Facchini F, Bonfiglioli B. Continuity or discontinuity of the life-style in central Italy during the Roman imperial age-early middle ages transition: diet, health, and behavior. Am J Phys Anthropol. 2007;132:381–94.
Article
PubMed
Google Scholar
Purcell N. The way we used to eat: diet, community, and history at Rome. Am J Philol. 2003;124:329–58.
Article
PubMed
Google Scholar
Spurr MS. The cultivation of millet in Roman Italy. (Papers of the British School at Rome 51). British School at Rome. London 1983. pp. 1–15.
Murphy C, Thompson G, Fuller D. Roman food refuse: urban archaeobotany in Pompeii, Regio VI, Insula 1. Veg Hist Archaeobot. 2013;22:409–19. https://doi.org/10.1007/s00334-012-0385-8.
Article
Google Scholar
Heinrich F. Modelling crop-selection in Roman Italy. The economics of agricultural decision making in a globalizing economy. In: de Haas TCA, Tol GW, The Economic Integration of Roman Italy. Rural communities in a globalizing world. Leiden: Brill; 2017. p. 141–69.
Google Scholar
Killgrove K, Tykot RH. Food for Rome: a stable isotope investigation of diet in the imperial period (1st–3rd centuries AD). J Anthropol Archaeol. 2013;32:28–38.
Article
Google Scholar
Rowan E. Bioarchaeological preservation and non-elite diet in the Bay of Naples: an analysis of the food remains from the Cardo V sewer at the Roman site of Herculaneum. Environ Archaeol. 2017;22:318–36. https://doi.org/10.1080/14614103.2016.1235077.
Article
Google Scholar
Nelson M. The barbarian’s beverage: a history of beer in ancient Europe. Routledge. 2005.
Retief FP, Cilliers L. Wine in Graeco-Roman antiquity with emphasis on its effect on health. AASCIT J Health. 2015;2:44–9.
Google Scholar
Petrovska BB. Historical review of medicinal plants’ usage. Pharmacogn Rev. 2012;6:1–5.
Article
PubMed
PubMed Central
Google Scholar
Van der Veen M. Archaeobotany: the archaeology of human-plant interactions. In: Scheidel W, editor. The science of Roman history: biology, climate, and the future of the past. Princeton: Princeton University Press; 2018. p. 53–95.
Google Scholar
Dikshit SS, Rai S, Sharma MM. Saga of ethnobotanical genesis from ancient to present scenario with special reference to the Darjeeling Himalayas. J Med Plant. 2016;4:108–16.
Google Scholar
Gismondi A, D'Agostino A, Canuti L, Di Marco G, Martínez-Labarga C, Angle M, Rickards O, Canini A. Dental calculus reveals diet habits and medicinal plant use in the Early Medieval Italian population of Colonna. J Archaeol Sci Rep. 2018;20:556–64.
Google Scholar
Gismondi A, Di Marco G, Martini F, Sarti L, Crespan M, Martínez-Labarga C, Rickards O, Canini A. Grapevine carpological remains revealed the existence of a Neolithic domesticated Vitis vinifera L. specimen containing ancient DNA partially preserved in modern ecotypes. J Archaeol Sci. 2016;69:75–84.
Article
CAS
Google Scholar
Gismondi A, D’Agostino A, Canuti L, Di Marco G, Basoli F, Canini A. Starch granules: a data collection of 40 food species. Plant Biosyst. 2019;153:273–9.
Article
Google Scholar
Bucher E. Lo spettro pollinico dei mieli dell'Alto Adige. Agenzia provinciale per la protezione dell'ambiente e la tutela del lavoro. Laboratorio biologico; 2004.
Google Scholar
Dove CJ, Koch SL. Microscopy of feathers: a practical guide for forensic feather identification. Microscope-Chicago. 2011;59:51.
Google Scholar
Martin AC, Harvey WJ. The Global Pollen Project: a new tool for pollen identification and the dissemination of physical reference collections. Methods Ecol Evol. 2017;8:892–7.
Article
Google Scholar
PalDat– a palynological database (2000 onwards). 2019. www.paldat.org. .
Baldoni M, Scorrano G, Gismondi A, D’Agostino A, Alexander M, Gaspari L, Vallelonga F, Canini A, Rickards O, Martìnez-Labarga C. Who were the miners of Allumiere? a multidisciplinary approach to reconstruct the osteobiography of an Italian worker community. PLoS ONE. 2018;13:e0205362.
Article
CAS
PubMed
PubMed Central
Google Scholar
NIST, 2017. https://www.sisweb.com/software/ms/nist.htm. .
FoodDB version 1.0. 2013. http://fooddb.ca/. Accessed 21 Dec 2018.
TGSC. The Good Scents Company. 2015. http://www.thegoodscentscompany.com/. Accessed 13 Dec 2018.
Cristiani E, Radini A, Edinborough M, Borić D. Dental calculus reveals Mesolithic foragers in the Balkans consumed domesticated plant foods. Proc Natl Acad Sci. 2016;113:10298–303.
Article
CAS
PubMed
PubMed Central
Google Scholar
Eerkens JW, Tushingham S, Brownstein KJ, Garibay R, Perez K, Murga E, Kaijankoskif P, Rosenthal JS, Gang DR. Dental calculus as a source of ancient alkaloids: detection of nicotine by LC-MS in calculus samples from the Americas. J Archaeol Sci Rep. 2018;18:509–15.
Google Scholar
Hendy J, Warinner C, Bouwman A, Collins MJ, Fiddyment S, Fischer R, Hagan R, Hofman CA, Holst M, Chaves E, Klaus L, Larson G, Mackie M, McGrath K, Mundorff AZ, Radini A, Rao H, Trachsel C, Velsko IM, Speller CF. Proteomic evidence of dietary sources in ancient dental calculus. Proc R Soc B. 2018;285:20180977.
Article
CAS
PubMed
PubMed Central
Google Scholar
Power RC, Salazar-García DC, Rubini M, Darlas A, Havarti K, Walker M, Hublin JJ, Henry AG. Dental calculus indicates widespread plant use within the stable Neanderthal dietary niche. J Hum Evol. 2018;119:27–41.
Article
PubMed
Google Scholar
Hardy K, Buckley S, Collins MJ, Estalrrich A, Brothwell D, Copeland L, García-Tabernero A, García-Vargas S, de la Rasilla M, Lalueza-Fox C, Huguet R, Bastir M, Santamaría D, Madella M, Wilson J, Fernández Cortés Á, Rosas A. Neanderthal medics? Evidence for food, cooking, and medicinal plants entrapped in dental calculus. Naturwissenschaften. 2012;99:617–26.
Article
CAS
PubMed
Google Scholar
Cummings LS, Yost C, Sołtysiak A. Plant microfossils in human dental calculus from Nemrik 9, a Pre-Pottery Neolithic site in Northern Iraq. Archaeol Anthropol Sci. 2018;10:883–91.
Article
Google Scholar
Lippi MM. The contribution of starch grain and phytolith analyses in reconstructing ancient diets. Fl Medit. 2018;28:287–94. https://doi.org/10.7320/FlMedit28.287.
Article
Google Scholar
Lieverse AR. Diet and the aetiology of dental calculus. Int J Osteoarchaeol. 1999;9:219–32.
Article
Google Scholar
Radini A, Nikita E, Buckley S, Copeland L, Hardy K. Beyond food: the multiple pathways for inclusion of materials into ancient dental calculus. Am J Phys Anthropol. 2017;162:71–83.
Article
PubMed
Google Scholar
Cristiani E, Radini A, Borić D, Robson HK, Caricola I, Carra M, Mutri G, Oxilia G, Zupancich A, Šlaus M, Vujević D. Dental calculus and isotopes provide direct evidence of fish and plant consumption in Mesolithic Mediterranean. Sci Rep. 2018;8:8147.
Article
CAS
PubMed
PubMed Central
Google Scholar
ICSN. The international code for starch nomenclature. 2011. http://fossilfarm.org/ICSN/Code.html. Accessed 22 Apr 2018.
Murphy CA. Pompeii, a fully urban society: charting diachronic social and economic changes in the environmental evidence. Tijdschrift voor Mediterrane Archeologie. 2017.
Sadori L, Susanna F. Hints of economic change during the late Roman Empire period in central Italy: a study of charred plant remains from “La Fontanaccia”, near Rome. Veg Hist Archaeobot. 2005;14:386–93.
Article
Google Scholar
Murphy C. Finding millet in the Roman world. Archaeol Anthrop Sci. 2016;8:65–78.
Article
Google Scholar
Kamanatzis E. Agricultural practices in ancient Macedonia from the Neolithic to the Roman period. 2018. http://hdl.handle.net/11544/29152, .
Google Scholar
Cappers RTJ. Modelling shifts in cereal cultivation in Egypt from the start of agriculture until modern times. News from the past: progress in African archaeobotany: Proceedings of the 7th International Workshop on African Archaeobotany in Vienna, 2–5 July 2012. Barkhuis. 2016. p. 27.
Fuller DQ, Stevens CJ. Sorghum domestication and diversification: a current archaeobotanical perspective. In: Plants and People in the African Past. Cham: Springer; 2018. p. 427–52.
Chapter
Google Scholar
Mercuri AM, Fornaciari R, Gallinaro M, Vanin S, Di Lernia S. Plant behaviour from human imprints and the cultivation of wild cereals in Holocene Sahara. Nat plants. 2018;4:71.
Article
PubMed
Google Scholar
Copeland L, Hardy K. Archaeological Starch. Agronomy. 2018;8:4.
Article
CAS
Google Scholar
Travaglini A, Arsieni A, Brighetti MA, Vinciguerra F. Atlante del polline delle principali specie allergeniche d'Italia. Il Raggio Verde. Lecce; 2014.
Google Scholar
Buonincontri MP, Saracino A, Di Pasquale G. The transition of chestnut (Castanea sativa Miller) from timber to fruit tree: cultural and economic inferences in the Italian peninsula. Holocene. 2015;25:1111–23.
Article
Google Scholar
Moser D, Nelle O, Di Pasquale G. Timber economy in the Roman Age: charcoal data from the key site of Herculaneum (Naples, Italy). Archaeol Anthrop Sci. 2018;10:905–21.
Article
Google Scholar
Carocho M, Calhelha RC, Queiroz MJR, Bento A, Morales P, Soković M, Ferreira IC. Infusions and decoctions of Castanea sativa flowers as effective antitumor and antimicrobial matrices. Ind Crop Prod. 2014;62:42–6.
Article
Google Scholar
Delaviz H, Mohammadi J, Ghalamfarsa G, Mohammadi B, Farhadi N. A review study on phytochemistry and pharmacology applications of Juglans regia plant. Pharmacogn rev. 2017;11:145.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zumla A, Lulat A. Honey-a remedy rediscovered; 1989. p. 384–5.
Google Scholar
Eteraf-Oskouei T, Najafi M. Traditional and modern uses of natural honey in human diseases: a review. Iran J Basic Med Sci. 2013;16:731.
PubMed
PubMed Central
Google Scholar
The Textile Institute. The identification of textile materials. 7th ed. Manchester: The Textile Institute; 1985.
Google Scholar
Bergfjord C, Holst B. A procedure for identifying textile bast fibres using microscopy: flax, nettle/ramie, hemp and jute. Ultramicroscopy. 2010;110:1192–7.
Article
CAS
PubMed
Google Scholar
Mercuri AM, Accorsi CA, Mazzanti MB. The long history of Cannabis and its cultivation by the Romans in central Italy, shown by pollen records from Lago Albano and Lago di Nemi. Veg Hist Archaeobot. 2002;11:263–76.
Article
Google Scholar
Kvavadze E, Bar-Yosef O, Belfer-Cohen A, Boaretto E, Jakeli N, Matskevich Z, Meshveliani T. Response to comment on “30,000-year-old wild flax fibers”. Science. 2010;8:1634.
Article
CAS
Google Scholar
Bosi G, Mazzanti MB, Florenzano A, N’siala IM, Pederzoli A, Rinaldi R, Torri P, Mercuri AM. Seeds/fruits, pollen and parasite remains as evidence of site function: Piazza Garibaldi–Parma (N Italy) in Roman and Mediaeval times. J Archaeol Sci. 2011;38:1621–33.
Article
Google Scholar
Zemanek A, Zemanek B, Harmat, K, Madeja J, Klepacki P. Selected foreign plants in old polish botanical literature, customs and art (Acorus calamus, Aesculus hippocastanum, Cannabis sativa, Fagopyrum, Helianthus anuus, Iris). Plants and culture: seeds of the cultural heritage of Europe. Edipuglia, Bari; 2009. p. 179-193.
Singh M, Sardesai MM. Cannabis sativa (Cannabaceae) in ancient clay plaster of Ellora Caves. India. Curr Sci. 2016;110:884.
Google Scholar
Gleba M, Harris S. The first plant bast fibre technology: identifying splicing in archaeological textiles. Archaeol Anthrop Sci. 2018:1–18.
Sperduti A, Giuliani MR, Guida G, Petrone PP, Rossi PF, Vaccaro S, Frayer DW, Bondioli L. Tooth grooves, occlusal striations, dental calculus, and evidence for fiber processing in an Italian eneolithic/bronze age cemetery. Am J Phys Anthropol. 2018;167:234–43.
Article
PubMed
Google Scholar
Montanari AA. I fiori del male. Opium, cannabis e piante psicoattive nel Medioevo. I quaderni del m. æ. s. J. Mediæ Ætatis Sodalicium. 2010;13:105–24.
Google Scholar
Butrica JL. The medical use of cannabis among the Greeks and Romans. J Cann Therap. 2002;2:51–70.
Article
Google Scholar
Wainstein J, Ganz T, Boaz M, Bar Dayan Y, Dolev E, Kerem Z, Madar Z. Olive leaf extract as a hypoglycemic agent in both human diabetic subjects and in rats. J Med Food. 2012;15:605–10.
Article
PubMed
Google Scholar
Sabry OM. Beneficial health effects of olive leaves extracts. J Nat Sci Res. 2014;4:1–9.
Google Scholar
Cinti T, Lo CM. L’olio tra fede, medicina e cucina. In: Oleum et agri. Ruralità e paesaggio culturale - Recuperi archeologici della Guardia di Finanza in mostra a San Vito Romano. Gangemi Editore; 2015. p. 25
Google Scholar
Hashmi MA, Khan A, Hanif M, Farooq U, Perveen S. Traditional uses, phytochemistry, and pharmacology of Olea europaea (olive). Evid Based Complement Alternat Med. 2015. https://doi.org/10.1155/2015/541591.
Kvavadze E, Sagona A, Martkoplishvili I, Chichinadze M, Jalabadze M, Koridze I. The hidden side of ritual: new palynological data from Early Bronze Age Georgia, the Southern Caucasus. J Archaeol Sci Rep. 2015;2:235–45.
Google Scholar
Sari A, Arpacik A. Morphological hair identification key of common mammals in turkey. Appl Ecol Env Res. 2018;16:4593–603.
Article
Google Scholar
Grivetti LE. Mediterranean food patterns: the view from antiquity, ancient Greeks and Romans. In: In the Mediterranean diet. Constituents and health promotion. Boca Raton: CRC Press; 2001.
Google Scholar
Faas P. Around the Roman table: food and feasting in ancient Rome: University of Chicago Press; 2005.
Redfern RC, Hamlin C, Athfield NB. Temporal changes in diet: a stable isotope analysis of late Iron Age and Roman Dorset. Britain. J Archaeol Sci. 2010;37:1149–60.
Article
Google Scholar
Pate FD, Henneberg RJ, Henneberg M. Stable carbon and nitrogen isotope evidence for dietary variability at ancient Pompeii, Italy. Mediterr Archaeol Archaeom Int J. 2016;16.
Eglinton G, Gonzalez AG, Hamilton RJ, Raphael RA. Hydrocarbon constituents of the wax coatings of plant leaves: a taxonomic survey. Phytochemistry. 1962;1:89–102.
Article
CAS
Google Scholar
Evershed RP, Heron C, Charters S, Goad LJ. The survival of food residues: new methods of analysis, interpretation and application. In: Proceedings of the British Academy; 1992. p. 2.
Buckley SA, Stott AW, Evershed RP. Studies of organic residues from ancient Egyptian mummies using high temperature-gas chromatography-mass spectrometry and sequential thermal desorption-gas chromatography-mass spectrometry and pyrolysis-gas chromatography-mass spectrometry. Analyst. 1999;124:443–52.
Article
CAS
PubMed
Google Scholar
Kanthilatha N, Boyd W, Dowell A, Mann A, Chang N, Wohlmuth H, Parr J. Identification of preserved fatty acids in archaeological floor sediments from prehistoric sites at Ban Non Wat and Nong Hua Raet in northeast Thailand using gas chromatography. J Archaeol Sci. 2014;46:353–62.
Article
CAS
Google Scholar
Swanson D, Block R, Mousa SA. Omega-3 fatty acids EPA and DHA: health benefits throughout life. Adv Nutr. 2012;3:1–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dalby A. Food in the ancient world from A to Z. Routledge. 2013.
Destaillats F, Buyukpamukcu E, Golay PA, Dionisi F, Giuffrida F. Letter to the Editor: vaccenic and rumenic acids, a distinct feature of ruminant fats. J Dairy Sci. 2005;88:449.
Article
CAS
PubMed
Google Scholar
Borstad CM, Garvie-Lok S, Katsonopoulou D. Diet at ancient Helike, Achaea, Greece based on stable isotope analysis: from the Hellenistic to the Roman and Byzantine periods. J Archaeol Sci Rep. 2018;18:1–10.
Google Scholar
Shaaban HA, Moawad SA. Chemical composition, nutritional and functional properties of some herbs and spices. Curr Sci. 2017;3:165–79.
Google Scholar
Benchabane O. Chemical composition and insecticidal activities of essential oils of two Algerian endemic plants: Ferula vesceritensis Coss. et Dur. and Thymus pallescens de Noe. Int J Agric Sci Res. 2014;4:185–91.
Google Scholar
Gholamnezhad Z, Byrami G, Boskabady MH, Iranshahi M. Possible mechanism (s) of the relaxant effect of asafoetida (Ferula assa-foetida) oleo-gum-resin extract on guinea-pig tracheal smooth muscle. Avicenna J Phytomed. 2011;2:10–6.
Google Scholar
Ermolli ER, Romano P, Ruello MR, Lumaga MRB. The natural and cultural landscape of Naples (southern Italy) during the Graeco-Roman and Late Antique periods. J Archaeol Sci. 2014;42:399–411.
Article
Google Scholar
Bell L, Wagstaff C. Enhancement of glucosinolate and isothiocyanate profiles in Brassicaceae crops: addressing challenges in breding for cultivation, storage, and consumer-related traits. J Agric Food Chem. 2017;65:9379–403.
Article
CAS
PubMed
Google Scholar
Madhu A, Mala A, Jain SC. In vitro regulation of bioactive compounds in Trigonella species by mutagenic treatments. J Plant Sci. 2015;3:40–4.
Google Scholar
Aasim M, Baloch FS, Nadeem MA, Bakhsh A, Sameeullah M, Day S. Fenugreek (Trigonella foenum-graecum L.): an underutilized edible plant of modern world. In: Global perspectives on underutilized crops. Cham: Springer; 2018. p. 381–408.
Google Scholar
El-Wakf AM, Hassan HA, Mahmoud AZ, Habza MN. Fenugreek potent activity against nitrate-induced diabetes in young and adult male rats. Cytotechnology. 2015;67:437–47.
Article
CAS
PubMed
Google Scholar
Staub PO, Casu L, Leonti M. Back to the roots: a quantitative survey of herbal drugs in Dioscorides’ De Materia Medica (ex Matthioli, 1568). Phytomedicine. 2016;23:1043–52.
Article
CAS
PubMed
Google Scholar
Maruo VM, Bracarense AP, Metayer JP, Vilarino M, Oswald IP, Pinton P. Ergot alkaloids at doses close to eu regulatory limits induce alterations of the liver and intestine. Toxins. 2018;10:183.
Article
CAS
PubMed Central
Google Scholar
Siadat SA, Direkvand-Moghadam F. The study of essential oil composition of Matricaria chamomilla in Khouzestan. Adv Herb Med. 2016;2:1–5.
CAS
Google Scholar
Cilliers L, Retief F. Poisons, poisoners, and poisoning in ancient Rome. In Toxicology in Antiquity. Academic Press. 2019. p. 231-242.
Merlin MD. Archaeological evidence for the tradition of psychoactive plant use in the old world. Econ Bot. 2003;57:295–323.
Article
Google Scholar
van Tellingen C. Pliny’s pharmacopoeia or the Roman treat. Neth Heart J. 2007;15:118–20.
Article
PubMed
PubMed Central
Google Scholar
Rastogi S, Pandey MM, Rawat AKS. Traditional herbs: a remedy for cardiovascular disorders. Phytomedicine. 2016;23:1082–9.
Article
PubMed
Google Scholar
Weiss RF. Herbal Medicine. In: Meuss AR, editor. Lehrbuch der Phytotherapie. Beaconsfield, England: Beaconsfield Publishers ltd; 2000. p. 1–11.
Google Scholar
Guasch-Jané MR, Ibern-Gómez M, Andrés-Lacueva C, Jáuregui O, Lamuela-Raventós RM. Liquid chromatography with mass spectrometry in tandem mode applied for the identification of wine markers in residues from ancient Egyptian vessels. Anal Chem. 2004;76:1672–7.
Article
CAS
PubMed
Google Scholar
Milanesi C, Bigliazzi I, Faleri C, Caterina B, Cresti M. Microscope observations and DNA analysis of wine residues from Roman amphorae found in Ukraine and from bottles of recent Tuscan wines. J Archaeol Sci. 2011;38:3675–80.
Article
Google Scholar
Stanley PV. Gradation and quality of wines in the greek and roman worlds. J Wine Res. 1999;10:105–14.
Article
Google Scholar
Nikolić VM. The role of wine in transition ceremonies and certain holiday traditions. Istraživanja. Ј Hist Res. 2016:5–17.
Marvelli S, De’Siena S, Rizzoli E, Marchesini M. The origin of grapevine cultivation in Italy: the archaeobotanical evidence. Ann Bot. 2013;3:155–63.
Google Scholar
Unwin T. Wine in the Graeco-Roman economy. In: Wine and the vine: an historical geography of viticulture and the wine trade. Routledge, UK: London. 1st edition; 2005.
Google Scholar
Bocquet L, Sahpaz S, Hilbert JL, Rambaud C, Rivière C. Humulus lupulus L., a very popular beer ingredient and medicinal plant: overview of its phytochemistry, its bioactivity, and its biotechnology. Phytochem Rev. 2018;17:1047–90.
Article
CAS
Google Scholar
Renner SS, Scarborough J, Schaefer H, Paris HS, Janick J, Pitrat M. Dioscorides’s Bruonia melaina is Bryonia alba, not Tamus communis, and an illustration labeled Bruonia melaina in the Codex Vindobonensis is Humulus lupulus not Bryonia dioica. In: Pitrat M editor. Cucurbitaceae. 2008. Proceedings of the IXth EUCARPIA meeting on genetics and breeding of Cucurbitaceae, Avignon (France), May 21-24th; 2008. p. 273-280.
Zanoli P, Zavatti M. Pharmacognostic and pharmacological profile of Humulus lupulus L. J Ethnopharmacol. 2008;116:383–96.
Article
CAS
PubMed
Google Scholar