Skip to content

Advertisement

  • Research
  • Open Access

A study on food-medicine continuum among the non-institutionally trained siddha practitioners of Tiruvallur district, Tamil Nadu, India

Journal of Ethnobiology and Ethnomedicine201814:45

https://doi.org/10.1186/s13002-018-0240-9

Received: 3 February 2018

Accepted: 29 May 2018

Published: 28 June 2018

Abstract

Background

Medicinal properties of the food species are one of the poorly documented and important areas of ethnopharmacology. The present survey quantitatively documented the medicinal foods prescribed by the non-institutionally trained siddha practitioners of Tiruvallur district of Tamil Nadu.

Methods

Field work was carried out between December 2014 and April 2017 using a questionnaire. The illnesses mentioned by the informants were grouped as illness categories on the basis of emic perceptions. Sufficiency of sampling of this survey was assessed by plotting the cumulative number of UR and Shannon-Wiener’s index. The indices such as informant consensus factor (FIC), Index of Agreement on Remedies (IAR), and Cultural Food Significance Index (CFSI) were calculated.

Results

This study documented 165 medicinal foods used by 82 non-institutionally trained siddha practitioners of Tiruvallur district, and 73.93% of these preparations were plant based. Among the animal taxa, 82.05% were represented by fish taxa. The illness category gastrointestinal ailments is the majorly cited illness category treated with plant-based formulations. The illness categories viz., gastrointestinal ailments, hemorrhoids, and neural ailments had high consensus under the group of plant-based medicinal foods. In animal-based medicinal foods, kapha ailments had gained 23.07% of UR. The illness categories such as bone fractures, male reproductive ailments, blood ailments, and anabolic had high FIC values.

Conclusions

Deeper studies on different dietary cultures of India may help to derive better interpretations on food-medicine continuum. This study identified some important claims such as the use of citron, pomegranate and Solanum americanum (gastrointestinal ailments), Abutilon indicum, onions and elephant foot yam (hemorrhoids), Boerhavia diffusa (urinary ailments), Moringa oleifera (anemia), Aloe vera (gynecological ailments), Eclipta prostrata (liver ailments), ivy gourd (diabetes), citron (hypertension), Centella asiatica (psychological ailments), spade nose shark (lactogogue), reticulate whipray (wheezing and bronchitis), Katelysia opima (impotence), Indian squid (anemia), and Indian oil sardine (anabolic). More studies on these claims will help identify novel functional foods to add to the field of medical nutrition therapy, with traditional brand identity. Robust studies on the documentation of the traditional knowledge on marine resources will yield a good database for various stakeholders and policy makers.

Keywords

Medicinal foodsFunctional foodsTraditional brand identityIndian traditional medicine

Background

In many traditions, species which are used as medicine are also used as food and vice-versa; in many cases, ethnobiologists have documented this unclear delineation between food and medicine [1]. Ethnopharmacological surveys showed that the local people who gathered various wild species for food had knowledge about the health benefits of those species [2]. These health benefits go beyond from nutritional perspectives to health promoting phytochemicals [3] and many of them have been consumed by healthy people as a prophylactic measure. Local gastronomies are one of the important markers of regional identity and have been built upon various ecological, cultural, and religious beliefs [4]. Studies on the dietary patterns of a culture yield better clues on patterns of health and diseases observed in that population [5]. The importance of food-medicine interface in ethnopharmacology has been recognized for nearly 25 years [6, 7]. Many studies focused either on the dietary or pharmacological properties of the species and only limited studies addressed this food-medicine continuum [8].

India has a wide diversity of traditional cuisines; they contain whole grains, millets, wild gathered vegetables [9] and various spices for coloring, flavoring and preserving foods [10]. Besides cultural and religious beliefs, Indian cuisine was largely influenced by the principles of traditional medicinal systems. According to Indian philosophy, food was considered as the gift from god and it was classified into various categories [11]. The cuisine of Tamils is one of the important and oldest cuisine systems of India, and it is influenced largely by siddha system of traditional medicine [12]. The sangam (300BC–300AD) and post-sangam age (300–600AD) literatures such as tirukkuṟaḷ, pattuppāṭṭu, and ācārakkōvai describe various types foods and rules for eating. A classical siddha literature, patārtta kuṇa cintāmaṇi, describes the medicinal properties of various foods and drinks [13].

Diet diversification is one of the concepts to combat micronutrient malnutrition and to prevent chronic diseases [14, 15]. Various factors such as increasing healthcare costs, life expectancy, and desire for improving the quality of life among elders created a demand in global food industry to find novel foods with functional properties [16]. Globally, a significant increase in the consumption of functional foods for prevention and management of various chronic ailments was recorded. The market size of functional foods is expected to grow by 241 billion US$ by 2019. In India, the functional food industry is expected to grow by 20% and to reach a market size of 6.1 billion rupees by 2019–2020. Traditional diets are generally considered as holistic, healthy, and medicinal; thus, the demand and public interest on such foods are increasing rapidly, as in the case of herbal drugs [17]. Developing functional foods from traditional claims has been considered as an area for identifying novel functional foods [18]. In countries like India where traditional medicinal systems are looked with a nationalistic sentiment, the demand and the scope for functional foods with traditional brand identity are increasing. Besides these advantages, previous studies also demonstrated the adverse interactions of some functional foods with conventional therapies [19, 20]. In such scenario, it becomes important to document and inclusively evaluate the nutritional as well as functional properties of medicinal foods used locally and also to know the illnesses generally treated with these foods [8].

Siddha is one of the major traditional medical systems of India, which shares some commonalities with ayurveda. It has been majorly practiced in Tamil Nadu state and in its fringes; it has also been practiced in foreign countries such as Sri Lanka and Malaysia by Tamil people [21]. Previous studies indicated that the siddha literatures used in contemporary practice started from fourth to fifth century AD, though the practices emerged earlier [22]. The name siddha had also been coined recently in 1923 to delineate it from other systems of traditional medicines [23]. Literatures related to siddha are found exclusively in Tamil language as palm leaf manuscripts, and many of them remain undocumented. Institutional training on siddha system of medicine has been provided by the Government of India; however, the number of non-institutionally trained practitioners remains high [24]. Non-institutional training in siddha system of medicine is usually given from father to son and master to disciple forms [23]. This kind of knowledge transmission is usually done orally, and a lot of their recipes remain undocumented. Our previous survey in this area documented the medicinal plants used for the treatment of cardiometabolic diseases by non-institutionally trained siddha practitioners [25], and this survey aimed to document and analyze the medicinal foods prescribed by the non-institutionally trained siddha practitioners for prevention or management of various illnesses.

Methods

Study area

Tiruvallur district is located in the northern part of Tamil Nadu state between 12°15′–13°15′ N and 79°15′–80°20′ E, with an area of 3423 km2 (Fig. 1). The eastern part of this district is bounded by the Bay of Bengal, and the remaining parts are mostly flat and dry. The coastal part of this district occupies 498 km2 and has a costal line of 80 km for marine fisheries. The inland fresh water area is 750 km2, and brackish water area is 148 km2. This district has a forest cover of 197.8 km2 which occupies 5.8% of the total area; these forests mostly fall under the classes of dry thorn and dry evergreen. This district has nine taluks (sub-districts) and 14 revenue blocks. This district exhibits both urban and rural characteristics. Nearly 47% of the total human workforce deals with agriculture; this district is one of the fastest developing districts of Tamil Nadu in terms of industries. The average rainfall of the district is 1104 mm, out of which 52% is received from northeast monsoon and 41% is received from southwest monsoon. The State Government is providing siddha treatment in 12 hospitals with 37 institutionally trained siddha practitioners.
Figure 1
Fig. 1

Map showing the location of the study area, Tiruvallur district in Tamil Nadu, India

Interviews

The local knowledge of non-institutionally trained siddha practitioners on medicinal foods was documented between December 2014 and April 2017 using a questionnaire. The interview protocols used for this survey were in accordance with the previously published methods [2629] and also with the guidelines of ISE code of ethics for ethnobiological research [30]. This study focused on the local knowledge of siddha practitioners who learnt only through traditional methods of teaching (non-institutional training), practicing for a minimum of 5 years, and willing to share their knowledge. Snowball sampling method was used to recruit the informants, and the informants for this survey were recruited irrespective of age, gender, education, and nativity. The aim of this survey was explained to the participants in lay terms: one or two visits were taken to get familiarity, and the formal interviews were conducted after getting written informant consent to participate in this survey. By this way, the local knowledge of 82 non-institutionally trained siddha practitioners on medicinal foods was documented in this communication. The protocol used in this survey was approved by the Institutional Ethics Committee for Ethnobiological Research.

The questionnaire used for this survey consisted of two parts. In the first part, the data related to the demography of the informants such as age, gender, education, mode of learning traditional medicine, experience, nativity, residential area, and occupation were documented. In the second part of the questionnaire, the data regarding the medicinal foods that they are prescribing to their patients, the ingredients (plants/animals) used to prepare these foods, parts, mode of preparation, illnesses treated with these foods, dosage, and duration of consumption were documented. Under the ingredients section, the key medicinal taxa which were perceived to attribute the medicinal effect were also documented. Besides it, other details such as the perceived availability of resources (very common - rare), localization of the usage (ubiquity - rare), frequency of usage (frequent - no longer used), parts used, multi-functional usage (different eatable forms reported), taste score (best - terrible), and medicinal role (very high - not recognized) were also documented. The informants were taken to the fields from where they usually collected the samples, including local markets, and asked to show the specimens of the taxa that they mentioned either fresh or in dry condition. The interviews were conducted in the local language Tamil, and they were video-graphed. Questionnaires were cross-verified with the video-graphs for ambiguous entries. The data were translated into English in the laboratory. Equivalent English terms for the illnesses were fixed by correlating the Tamil terminologies and symptoms with the biomedical literature by consulting an institutionally trained siddha practitioner.

Specimens

Representative specimens of the fresh plants or crude drugs were collected, herborized, and stored at the museum of Entomology Research Institute, Loyola College, Chennai. The botanical authenticity of the plants was confirmed by the examination of the voucher specimens using local flora [3134], and the valid names were confirmed with a website [35]. All the animals mentioned in this work were photographed, and their zoological names were confirmed by the Zoologist (MGP), who is one of the authors of this communication.

Quantification of the data

Medicinal plants/animals which were considered as key medicinal taxa by the informants were taken for the analysis. The illnesses mentioned by the informants were grouped as illness categories on the basis of emic perceptions. The illness category vadha ailments include the musculoskeletal disorders and kapha ailments include the pulmonary and respiratory diseases. The data were then converted into use reports (UR) and claims in accordance with our previous work. Briefly, UR can be described as “informant (i) prescribes a species (s) for a use category (u)” [36]; claims lack the informant (i) factor [37]. For example, if two informants mention a species for the treatment of an illness category, it yields two UR and a claim. Sufficiency of sampling of this survey was assessed by plotting the cumulative number of UR and Shannon Wiener’s index, which was calculated using PAST3 program.

Informant consensus over treating illnesses and on the taxa was assessed using informant consensus factor (FIC) and Index of Agreement on Remedies (IAR), respectively, [38] using the following formula.

FIC = (Nur − Nt)/(Nur − 1)

IAR = (nur − na)/(nr − 1)

where Nur is the number of UR for a particular illness category, Nt is the total number of taxa mentioned for that particular illness category, nur is the total number of UR registered for a taxon, and na is the number of illness categories that are treated with that taxon. These factors range from zero to one, where increasing values indicate high rate of informant consensus. Illness categories with high, average, and low consensus were calculated [39, 40]. Local uses of medicinal taxa having high IAR value and UR were compared with global usage pattern and scientific literature.

Humoral properties (cold and hot) of the medicinal plants and their uses in formal siddha medicine were taken from siddha materia medica [4144]. If no report was available about a taxon, it was kept under the category “unspecified.” relative frequency of citation (RFC) on the basis of humors for each illness category was calculated using the following formula.

RFC = (number of UR for a humor/total number of UR) ×  100

Cultural Food Significance Index (CFSI) of the key medicinal taxa was calculated in accordance with the method of Pieroni [45] with slight modifications (Table 1). For this calculation, key medicinal taxa with a minimum of two UR were considered. CFSI took seven indices into account, and it was calculated using the following formula.
Table 1

Scores for Cultural Food Significance Index

Indices

Attributes

Scores

Availability index (AI)

Availability

 Very common

4.0

 Common

3.0

 Middle

2.0

 Rare

1.0

Localization of the use

 Ubiquity

0.0

 Localized

− 0.5

 Very localized

− 1.0

Frequency of utilization index (FUI)

> Once/week

5.0

Once/week

4.0

Once/month

3.0

> Once/year but < once/month

2.0

Once/year

1.0

No longer used during the past 30 years

0.5

Part used index (PUI)

Whole aerial parts

3.0

Leaves with a few stems, whole aerial parts of very young plants

2.0

Root/root stocks, bulbs, leaves, fruits

1.5

Shoots

1.25

Bark, younger part of roots, stems, leaf stalks, young whorls of leaves, seeds

1.0

Younger part of shoots, buds, flowers, receptacles

0.75

Multifunctional food use index (MFFI)

Chutney, dosa, gravy, sauce, salad

1.5

Jam, porridge, pickles, fried, syrups

1.0

Soup, milk preparation

0.75

Raw

0.5

Taste Score Appreciation Index (TSAI)

Best

10.0

Very good

9.0

Good

7.5

Fair

6.5

Poor

5.5

Terrible

4.0

Food Medicinal Role Index (FMRI)

IAR of the taxa > mean + SD

5.0

IAR of the taxa < mean + SD but IAR > mean − SD

4.0

IAR < mean − SD

3.0

CFSI = QI) ×  AI) ×  FUI) ×  PUI) ×  MFFI) ×  TSAI) ×  FMRI ×  10− 2

where Quotation index (QI) indicated the number of UR for a taxon. Availability index (AI) was obtained by subtracting scores of localization of the use from the scores of availability. Frequency of use index (FUI), part used index (PUI), multifunctional food use index (MFFI), Taste Score Appreciation Index (TSAI), and Food Medicinal Role Index (FMRI) were calculated as given in Table 1. In the case of FMRI, the taxa with IAR greater than mean plus standard deviation of the IAR of all taxa were given the highest score. The taxa with IAR value lower than mean plus standard deviation of the IAR were given the lowest score. Other taxa were given average FMRI score. For animal taxa, PUI was omitted from calculation.

Results

Demographic profile of the informants

Analysis of the informants’ demography indicated that the non-institutionally trained siddha tradition is a male dominant domain and a major portion of these practitioners had completed secondary or higher secondary schooling. Considerable portion (36.58%) of the practitioners had migrated to the study area from other districts. It also showed that major portion (71.94%) of practitioners was practicing in urban and semi-urban areas (Table 2).
Table 2

Demographic profile of the informants interviewed in the survey (N = 82)

 

Number

Percent

Age

 35–40

7

8.53

 41–50

44

53.65

 51–60

26

31.70

 Above 60

5

6.09

Gender

 Male

80

97.56

 Female

2

2.43

Education

 Primary school

5

6.09

 Secondary school

20

24.39

 Higher secondary

41

50.00

 Degree

16

19.51

Mode of learning

 From family members

13

15.85

 From traditional practitioners

69

62.19

Experience

 5 years

1

1.21

 6–20 years

62

75.60

 21–50 years

19

23.17

Nativity to the district

 Native

52

63.41

 Migrated

30

36.58

Residence

 Urban

35

42.68

 Semi-urban

24

29.26

 Rural

23

28.04

Occupation

 Full time practitioners

82

100

Descriptive statistics of the medicinal foods

This study documented 165 medicinal foods used by the non-institutionally trained siddha practitioners of Tiruvallur district to treat various illnesses. Among them 73.93% were plant based, and 26.07% foods used animal taxa as the major key ingredients. To prepare these foods, 104 (72.72%) plant taxa and 39 (27.27%) animal taxa were used and major portion of the animals was represented by fish taxa. Sampling sufficiency analysis showed a clear asymptote of the curve which indicated the sufficiency of the sampling (Fig. 2). Analysis of the data yielded 588 UR and 381 claims. Plant-based formulations gained high number of UR (77.68%) and claims (76.64%). The plant and animal taxa cited by the non-institutionally trained siddha practitioners are given in Tables 3 and 4. The medicinal foods prescribed by the informants are given in Additional file 1: Table S1. The photographs of some animal taxa referred by the informants for the preparation of medicinal foods are given in Fig. 3.
Figure 2
Fig. 2

Assessing sampling sufficiency for the plant and animal species cited to prepare medicinal foods by the non-institutionally trained Siddha practitioners in Tiruvallur district using Species Accumulation Curve

Table 3

List of plant taxa cited by the non-institutionally trained siddha practitioners of Tiruvallur district of Tamil Nadu for preparing medicinal foods

S.No

Binomial name, Voucher number & Family

Vernacular name

Parts used

Humoral propertya

Reported pharmacological action in Siddhaa

Illnesses treated

Illnesses categories

IAR

1.

Abelmoschus esculentus (L.) Moench

SE201

(Malvaceae)

Veṇṭaikkāy

Tender fruits

Cold

Refrigerant, Aphrodisiac, Demulcent, Diuretic, Emollient, To treat diarrhea and dysentary

Diabetes (2), Coolant (1), Oligospermia (1)

Dia. (2), Coo. (1), Mal. (1)

0.333

2.

Abutilon indicum (Link) Sweet

SE193

(Malvaceae)

Tutti

Leaves

Cold

Demulcent, Tonic, Laxative, Diuretic, Sedative, To treat hemorrhoids, boils, gangrene and warts

Hemorrhoids (3)

Hem. (3)

1.000

3.

Acalypha indica L.

SE188

(Euphorbiaceae)

Kuppaimēṉi

Leaves

Hot

Anodyne, Anthelmintic, Cathartic, Diuretic, Emetic, Expectorant, Emmenagogue, To treat toothache, burns, organic poisons, stomachache, hemorrhoids, joint pain and bronchitis

Bronchitis (1), Hemorrhoids (2), Intestinal worms (1)

Hem. (2), Kap. (1), Gas. (1)

0.333

4.

Allium cepa L.

SE170

(Amaryllidaceae)

Veṅkāyam

Bulbs

Hot

Stimulant, Diuretic, Expectorant, Emmenagogue, Rubefacient, Demulcent, Aphrodisiac, To treat hemorrhoids, eczema, hypertension, mouth ulcers, polydipsia and diarrhea

Hemorroids (1), Bleeding through rectum (3), Oligospermia (2), Burning sensation (1)

Hem. (4), Mal. (2), Coo. (1)

0.666

5.

Allium sativum L.

SE107

(Amaryllidaceae)

Veḷḷaippūṇṭu

Bulbs

Hot

Carminative, Stomahic, Tonic, Alterative, Stimulant, Expectorant, Diuretic, Anthelmintic, To treat boils, cough, wheezing, intestinal worms and hemorrhoids

Indigestion (1), Dysmenorrhea (1), Diabetes (1), Heart ailments (1), Flatulance (1)

Gas. (2), Gyn. (1), Dia. (1), Hea. (1)

0.250

6.

Aloe vera (L.) Burm.f.

SE108

(Asphodelaceae)

Kaṟṟāḻai

Leaves

Cold

Tonic, Alterative, Purgative, Emmenagogue, To treat dermatological ailments, leprosy, hemorrhoids, anal fistula, urolithiasis

Obesity (1), Urolithiasis (1), Liver ailments (1), Dysmenorrhea (2), Metrorrhagia (1), Uteral ailments (1), Gastrointestinal ailments (1)

Gyn. (4), Obe. (1), Uri. (1), Liv. (1), Gas. (1)

0.428

7.

Alternanthera sessilis (L.) R.Br. ex DC.

SE159

(Amaranthaceae)

Poṉṉāṅkaṇṇi

Leaves

Cold

Alterative, Coolant, Good for eyes

Menstrual migraine (1), To increase memory and vision (1)

Gyn. (1), Psy. (1), Eye. (1)

0.000

8.

Amaranthus viridis L.

SE117

(Amaranthaceae)

Araikkīrai

Leaves

Hot

Stimulant, Aphrodisiac

Male infertility (1), Anemia (1), General weakness (2)

Wea. (2), Mal. (1), Blo. (1)

0.333

9.

Amorphophallus paeoniifolius (Dennst.) Nicolson

SE113

(Araceae)

Karuṇaikkiḻaṅku

Rhizomes

Cold

Alterative, Nutritive, Tonic, To treat pulmonary ailments, Hemorrhoids and anorexia

Hemorrhoids (3), Hypertension (1)

Hem. (3), Hpt. (1)

0.666

10.

Anacardium occidentale L.

SE127

(Anacardiaceae)

Muntiri

Seeds

Cold

Tonic, Aphrodisiac

General weakness (2), Fatigue (1)

Wea. (2), Fat. (1)

0.500

11.

Annona squamosa L.

SE183

(Annonaceae)

Cītāppaḻam

Fruits

Cold

Coolant

Coolant (1), Gastric ulcers (1)

Coo. (1), Gas. (1)

0.000

12.

Arachis hypogaea L.

SE126

(Fabaceae)

Vērkkaṭalai

Seeds

Hot

Nutrient, laxative, Emollient

General weakness (2), Fatigue (1)

Wea. (2), Fat. (1)

0.500

13.

Benincasa hispida (Thunb.) Cogn.

SE200

(Cucurbitaceae)

Veṇpūcaṇi

Tender fruits

Cold

Diuretic, Styptic, Tonic, Alterative, Nutrient, To treat dysuria, fever, dermatological ailments, leucorrhea, psychological ailments

Dysuria (1), To gain weight (1)

Uri. (1), Wea. (1)

0.000

14.

Beta vulgaris L.

SE150

(Amaranthaceae)

Pīṭrūṭ

Rhizomes

--

--

Anemia (2), Male infertility (1), Hypotension (1)

Blo. (2), Mal. (1), Hpo. (1)

0.333

15.

Boerhavia diffusa L.

SE194

(Nyctaginaceae)

Mūkkiraṭṭai

Leaves

Hot

Expectorant, Diuretic, Laxative, Coolant, Anthelmintic, Emetic

Dysuria (3)

Uri. (3)

1.000

16.

Borassus flabellifer L.

SE168

(Arecaceae)

Paṉai

Inflorescence

Cold

Coolant, Diuretic

Burning sensation (3), Jaundice (1)

Coo. (3), Jau. (1)

0.666

17.

Brassica oleracea var.

gongylodes L.

SE199

Brassicaceae

Nūkkal

Stems

--

--

Diabetes (2)

Dia. (2)

1.000

18.

Cardiospermum halicacabum L.

SE109

(Sapindaceae)

Muṭakkottāṉ

Leaves

Hot

Diuretic, Laxative, Stomachic, Rubefacient, Antirheumatic, Nutritive, To treat musculo-skeletal and dermatological ailments

Rhinitis (1), Cough (1), Somatalgia (3)

Ana. (3), Kap. (2)

0.750

19.

Carica papaya L.

SE182

(Caricaceae)

Pappāḷi

Fruits

Hot

Laxative, Tonic, Diuretic, Lactogogue

Constipation (1), Lactogogue (1), Joint pain (1)

Gas. (1), Gyn. (1), Vad. (1)

0.000

20.

Cassia fistula L.

SE197

(Fabaceae)

Carakkoṉṟai

Flowers

Hot

Vermifuge, To treat leucorrhea, anemia, jaundice, dermatological infections and diabetes

Diabetes (1)

Dia. (1)

0.000

21.

Centella asiatica (L.) Urban

SE157

(Apiaceae)

Vallārai

Leaves

Cold

Alterative, Tonic, Diuretic, Stimulant, Emmenagogue, To treat fever, elephantiasis, scrotal swelling, Swollen lymph nodes, eczema, wounds and swellings

To strengthen memory (2), Hypothyroidism (1)

Psy. (2), Thy. (1)

0.500

22.

Cicer arietinum L.

SE129

(Fabaceae)

Koṇṭaikkaṭalai

Seeds

Cold

Antibilious, Diuretic, Aphrodisiac

General weakness (2), Fatigue (1), Menstrual cramps (1)

Wea. (2), Fat. (1), Gyn. (1)

0.333

23.

Cichorium intybus L.

SE176

(Asteraceae)

Kāciṉikkīrai

Leaves

--

--

Male infertility (1)

Mal. (1)

0.000

24.

Cissus quadrangularis L.

SE137

(Vitaceae)

Piraṇṭai

Stem

Hot

Alterative, Emmenagogue, Stomachic, To treat hemorrhoids, anorexia, ulcers, diarrhea and fatigue

Obesity (1), Gastric ulcers (1), Bone fractures (1), Hemorrhoids (3)

Hem. (3), Obe. (1), Gas. (1), Bon. (1)

0.400

25.

Citrullus lanatus (Thunb.) Matsum. & Nakai

SE178

(Cucurbitaceae)

Tarpūcaṇi

Fruits

Cold

Coolant, Diuretic

Hyperacidity (2), Dysuria (1)

Gas. (2), Uri. (1)

0.500

26.

Citrus limon (L.) Osbeck

SE167

(Rutaceae)

Elumiccai

Fruits

Hot

Carminative, Rubefacient, To treat fainting, nausea, polydipsia, psychological ailments, eye ailments

Indigestion (3), Constipation (1), Heart ailments (1), Acne (1), Diabetes (1), Arthritis (2), To increase vision (1), Hypothyroidism (1)

Gas. (4), Vad. (2), Hea. (1), Der. (1), Dia. (1), Eye. (1), Thy. (1)

0.400

27.

Citrus medica L.

SE184

(Rutaceae)

Nārattai

Fruits

Cold

Aromatic, Stomachic, Astringent, Sedative, Digestive, Good to treat hypertension

Hyperacidity (1), Heart ailments (2), Gastric ulcers (2), Hypertension (2), Anorexia (2), Dermatological ailments (1)

Gas. (5), Hea. (2), Hpt. (2), Der. (1)

0.666

28.

Citrus reticulata Blanco

SE185

(Rutaceae)

Ārañcu

Fruits

--

--

Heart ailments (1)

Hea. (1)

0.000

29.

Cleome gynandra L.

SE190

(Cleomaceae)

Nalla vēḷai

Leaves

Hot

Rubefacient, Anthelmintic, Antispasmodic, Carminative, Diaphoretic

Joint pain (1), Rhinitis (2), Fever (1), Heart ailments (1)

Kap. (2), Fev. (1), Vad. (1), Hea. (1)

0.250

30.

Coccinia grandis

(L.) Voigt

SE147

(Cucurbitaceae)

Kōvaikkāy

Tender fruits

Cold

Expectorant, Antispasmodic, Febrifuge, To treat anorexia, fever, bronchitis and eczema

Gastric ulcers (3), Mouth ulcers (2), Oliguria (1), Diabetes (5), Burning sensation (2), Bronchitis (1)

Gas. (5), Dia. (5), Coo. (2), Uri. (1), Kap. (1)

0.692

31.

Cocculus hirsutus (L.) Diels

SE139

(Menispermaceae)

Kaṭṭukkoṭi

Leaves

Hot

Alterative, Laxative, Demulcent, Coolant, To treat diarrhea, metrorrhagia, dysuria and gastric ulcers

Oligospermia (1), Coolant (1)

Mal. (1), Coo. (1)

0.000

32.

Cocos nucifera L.

SE154

(Arecaceae)

Tēṅkāy

Endosperm

Cold

Coolant, Aperient, Nutrient, Diuretic, To treat mouth ulcers

Male infertility (1), Hypotension (1), Gastric ulcers (1), Mouth ulcers (1)

Gas. (2), Mal. (1), Hpo. (1)

0.333

33.

Cucumis sativus L.

SE174

(Cucurbitaceae)

Veḷḷarikkāy

Tender fruits

Cold

Diuretic, Nutrient, Demulcent, Coolant

Hyperacidity (2)

Gas. (2)

0.000

34.

Cuminum cyminum L.

SE134

(Apiaceae)

Cīrakam

Seeds

Cold

Carminative, Stimulant, Stomachic, Astringent, To treat hypertension, liver ailments, urolithiasis, dysentery, wheezing, rhinitis, insomnia

Somatalgia (1), Anemia (1), Anorexia (1), Coolant (2), Hypertension (1), Gastric ulcers (2)

Gas. (3), Coo. (2), Ana. (1), Blo. (1), Hpt. (1)

0.428

35.

Daucus carota L.

SE153

(Apiaceae)

Kāraṭ

Rhizome

--

--

Male infertility (1), Hypotension (1), Bloating (1), Nausea (1)

Gas. (2), Mal. (1), Hpo. (1)

0.333

36.

Digera muricata (L.) Mart.

SE192

(Amaranthaceae)

Toyyakkīrai

Leaves

Cold

Coolant

Diarrhea (1), Dysentery (1)

Gas. (2)

1.000

37.

Echinochloa frumentacea Link

SE123

(Poaceae)

Kutiraivāli

Seeds

--

--

General weakness (2), Fatigue (1)

Wea. (2), Fat. (1)

0.500

38.

Eclipta prostrata (L.) L.

SE177

(Asteraceae)

Karicalāṅkaṇṇi

Leaves

Hot

Cholagogue, Tonic, Alterative, Emetic, Laxative, Deobstruent, Hepatoprotective, To treat throat ailments, jaundice, leprosy, ascites, anemia and toothache

To increase memory (1) and vision (1), Liver ailments (2), Anemia (2)

Liv. (2), Blo. (2), Psy. (1), Eye. (1)

0.400

39.

Eleusine coracana Gaertn.

SE118

(Poaceae)

Kēḻvaraku

Seeds

Cold

Nutrient, Astringent, To treat diabetes

General weakness (2), Fatigue (1), Diabetes (1), To strengthen memory (1), Anemia (2)

Wea. (2), Blo. (2), Fat. (1), Dia. (1), Psy. (1)

0.333

40.

Erythrina variegata L.

SE138

(Fabaceae)

Kalyāṇamuruṅkai

Leaves

Hot

Diuretic, Laxative, Emmenagogue, Lactogogue

Bronchitis (1)

Kap. (1)

0.000

41.

Ferula assa-foetida L.

SE136

(Apiaceae)

Peruṅkāyam

Resin

Hot

Stimulant, Carminative, Antispasmodic, Expectorant, Laxative, Anthelmintic, Diuretic, Aphrodisiac, Emmenagogue

Somatalgia (1)

Ana. (1)

0.000

42.

Ficus benghalensis L.

SE142

(Moraceae)

Āl

Fruits

Cold

Astringent, Tonic, Aphrodisiac

Oligospermia (1)

Mal. (1)

0.000

43.

Ficus racemosa L.

SE140

(Moraceae)

Atti

Fruits

Cold

Astringent, Laxative, Good to treat diarrhea, hemorrhoids and anemia

Oligospermia (1), Anemia (2), Male infertility (1), Constipation (1), Wheezing (1), Gastric ulcers (1), Hemorrhoids (1)

Mal. (2), Blo. (2), Gas. (2), Hem. (1), Kap. (1)

0.428

44.

Ficus religiosa L.

SE141

(Moraceae)

Aracu

Fruits

Cold

Laxative, Coolant

Oligospermia (1)

Mal. (1)

0.000

45.

Foeniculum vulgare Mill.

SE114

(Apiaceae)

Peruñcīrakam

Seeds

Hot

Carminative, Stomachic, To treat uteral ailments, fever, indigestion, bloating, cough, liver ailments, wheezing, rhinitis

Heart ailments (1)

Hea. (1)

0.000

46.

Garcinia gummi-gutta (L.) Roxb.

SE101

(Clusiaceae)

Koṭampuḷi

Fruits

Hot

Carminative, Digestive

Obesity (1)

Obe. (1)

0.000

47.

Gossypium spp.

SE169

(Malvaceae)

Parutti

Seeds

Hot

Laxative, Expectorant, Aphrodisiac

General weakness (1), Somatalgia (1)

Wea. (1), Ana. (1)

0.000

48.

Hibiscus cannabinus L.

SE202

(Malvaceae)

Puḷiccakīrai

Leaves

Hot

Emollient, Laxative, To treat anorexia and hypertension

Anorexia (1)

Gas. (1)

0.000

49.

Hibiscus rosa-sinensis L.

SE102

(Malvaceae)

Cemparattai

Flowers

Cold

Laxative, Aphrodisiac, Emmenagogue, Emollient, Demulcent, Coolant, To treat leucorrhea, metrorrhagia and hypertension

Male infertility (1), Heart ailments (2)

Hea. (2), Mal. (1)

0.500

50.

Hybanthus enneaspermus (G.Don) R.Br. ex Arn.

SE162

(Violaceae)

Oritaḻtāmarai

Flowers

Cold

Nutritive, Aphrodisiac

Oligospermia (1), Hypothyroidism (1)

Mal. (1), Hpo. (1)

0.000

51.

Ipomoea aquatica Forssk.

SE191

(convolvulaceae)

Vaḷḷaikkīrai

Leaves

Cold

Coolant, Lactogogue, Aphrodisiac, Antidiabetic

Mouth ulcers (1), Gastric ulcers (2), Oligospermia (2)

Gas. (3), Mal. (2)

0.750

52.

Lagenaria siceraria (Molina) Standl.

SE104

(Cucurbitaceae)

Curaikkāy

Tender fruits

Cold

Coolant, Diuretic, Nutritive, Antibilious

Obesity (1), Coolant (1), To strengthen memory (1), Swelling of the limbs (1), Dysuria (2)

Uri. (3), Obe. (1), Coo. (1), Psy. (1)

0.500

53.

Leucas aspera (Willd.) Link

SE112

(Lamiaceae)

Tumpai

Leaves

Hot

Laxative, Expectorant, Stimulant, Emmenagogue, To treat headache, throat ailments, polydipsia, cough, bronchitis, sinusitis, leucorrhea, fatigue, somatalgia

Rhinitis (1), Cough (1), Somatalgia (1)

Kap. (2), Ana. (1)

0.500

54.

Limonia acidissima Groff

SE148

(Rutaceae)

Viḷā

Fruit bulbs

Cold

Aromatic, Coolant, To treat anorexia, bloating, polydipsia, cough and bronchitis

Diabetes (3), Polydipsia (1), Hypertension (1)

Dia. (4), Hpt. (1)

0.750

55.

Macrotyloma uniflorum (Lam.) Verdc.

SE100

(Fabaceae)

Koḷḷu

Seeds

Hot

Astringent, Diuretic, Tonic

Obesity (1)

Obe. (1)

0.000

56.

Mangifera indica L.

SE181

(Anacardiaceae)

Fruits

Hot

Laxative, Diuretic, Tonic, Aphrodisiac

Male infertility (2), Heart ailments (4), Anorexia (3), To increase vision (1)

Hea. (4), Mal. (2), Gas. (3), Eye. (1)

0.666

57.

Marsilea quadrifolia L.

SE195

(Marsileaceae)

Āraikkīrai

Leaves

Cold

Coolant, Polyuria

Polyuria (2), Ulcers in urinary tract (2)

Dia. (2), Uri. (2)

0.666

58.

Melochia corchorifolia L.

SE189

(Malvaceae)

Puṇṇākkukkīrai

Leaves

Cold

Diuretic, Laxative

Pain during menopause (1)

Gyn. (1)

0.000

59.

Mentha arvensis L.

SE171

(Lamiaceae)

Putiṉā

Leaves

Hot

Stomachic, Diuretic, Stimulant, Carminative, Antispasmodic

Anemia (1), Anorexia (1)

Blo. (1), Ana. (1)

0.000

60.

Momordica charantia L.

SE149

(Cucurbitaceae)

Pākaṟkāy

Tender fruits

Hot

Tonic, Stomachic, Stimulant, Antibilious, Laxative, Alterative, Anthelmintic

Diabetes (1), Bloating (1), Intestinal worms (1)

Gas. (2), Dia. (1)

0.500

61.

Moringa oleifera Lam.

SE111

(Moringaceae)

Muruṅkai

Leaves

Cold

Antispasmodic, Stimulant, Expectorant, Diuretic, To treat anorexia, headache, fainting and eye ailments

Rhinitis (1), Cough (1), Somatalgia (2), Anemia (5), General weakness (1), To increase vision (1), Hypertension (2), Diabetes (1), Obesity (1), Anorexia (1), Menstrual migraine (2)

Blo. (5), Ana. (2), Hpt. (2), Gyn. (2), Kap. (2), Wea. (1), Eye. (1), Dia. (1), Obe. (1), Gas. (1)

0.470

62.

Mukia maderaspatana (L.)

M.Roem.

SE160

(Cucurbitaceae)

Mucumucukkai

Leaves

Hot

Expectorant, To treat cough, bronchitis, wheezing, rhinitis

Asthma (2), Bronchitis (2), Cough (1)

Kap. (5)

1.000

63.

Murraya koenigii (L.) Sprengel

SE106

(Rutaceae)

Kaṟivēppilai

Leaves

Hot

Tonic, Stomachic, Diarrhea, Nausea, Fever, Psychological ailments

Indigestion (2), Dysmenorrhea (1), Diabetes (1), Anemia (1), Obesity (1), Anorexia (1), Bloating (1)

Gas. (4), Gyn. (1), Dia. (1), Blo. (1), Obe. (1)

0.428

64.

Musa paradisiaca L.

SE145

(Musaceae)

Vāḻai

Tender fruits, Flowers

Hot

Demulcent, Laxative, Nutritive, To treat hemorrhoids

Menstrual cramps (3), Gastric ulcers (3), Mouth ulcers (1), Hyperacidity (1), Hemorrhoids (2), Bleeding through rectum (1)

Gas. (5), Hem. (3), Gyn. (3)

0.800

65.

Nelumbo nucifera Gaertn.

SE105

(Nelumbonaceae)

Tāmarai

Flowers

Cold

Coolant, Astringent, Expectorant, Sedative, To treat fever, polydipsia and liver ailments

Heart ailments (1)

Hea. (1)

0.000

66.

Nigella sativa L.

SE135

(Ranunculaceae)

Karuñcīrakam

Seeds

Hot

Carminative, Diuretic, Emmenagogue, Lactogogue, Anthelmintic, Stomachic, Antibiotic, Emmollient, To treat eczema, headache, cough, vomiting, nausea and jaundice

Somatalgia (1), Amenorrhea (1)

Ana. (1), Gyn. (1)

0.000

67.

Oldenlandia umbellata L.

SE161

(Rubiaceae)

Impūral

Leaves

Cold

Expectorant, Styptic, Cholagogue, Good to treat internal bleeding

Productive cough (1), Bronchitis (1), Sinusitis (1)

Kap. (3)

1.000

68.

Oryza sativa L.

SE130

(Poaceae)

Arici

Seeds

Cold

Nutrient, Demulcent, Coolant

General weakness (2), Fatigue (1), Diabetes (1), Anemia (1)

Wea. (2), Fat. (1), Dia. (1), Blo. (1)

0.250

69.

Oxalis corniculata L.

SE203

(Oxalidaceae)

Puḷiyārai

Leaves

Cold

Stomachic, Coolant, Astringent, To treat fainting, diarrhea, bleeding through anus and hemorrhoids

Hypertension (2), Insomnia (1)

Hpt. (2), Psy. (1)

0.500

70.

Panicum sumatrense Roth ex Roem. & Schult.

SE121

(Poaceae)

Cāmai

Seeds

Cold

Demulcent, Tonic, To treat polydipsia, fever and musculo-skeletal disorders

General weakness (2), Fatigue (1)

Wea. (2), Fat. (1)

0.500

71.

Paspalum scrobiculatum L.

SE120

(Poaceae)

Varaku

Seeds

Cold

Chologogue

General weakness (2), Fatigue (1)

Wea. (2), Fat. (1)

0.500

72.

Pennisetum glaucum (L.)R.Br.

SE119

(Poaceae)

Kampu

Seeds

Cold

Tonic

General weakness (2), Fatigue (1), Anemia (1)

Wea. (2), Fat. (1), Blo. (1)

0.333

73.

Phoenix dactylifera L.

SE156

(Arecaceae)

Pērīṭcai

Fruits

Hot

Tonic, Nutritive, Demulcent, Laxative, Diuretic, Febrifuge, Coolant, Expectorant, Aphrodisiac, Good to treat polydipsia, anorexia and diabetes

Male infertility (1), Hypotension (1), General weakness (1)

Mal. (1), Hpo. (1), Wea. (1)

0.000

74.

Phyllanthus emblica L.

SE152

(Phyllanthaceae)

Nellikkāy

Fruits

Cold

Astringent, Coolant, Diuretic, Laxative, To treat bronchitis, sinusitis, nausea, vomiting, giddiness and hypertension

Heart ailments (2), Anemia (2), Constipation (1), Wheezing (1), Burning sensation (1), Diabetes (1), Anorexia (2), Rheumatalgia (1), To increase vision (2), Hypothyroidism (1)

Gas. (3), Hea. (2), Blo. (2), Eye. (2), Kap. (1), Coo. (1), Dia. (1), Vad. (1), Hpo. (1)

0.384

75.

Piper longum L.

SE133

(Piperaceae)

Tippili

Seeds

Hot

Stimulant, Carminative, To treat cough, gastric ulcers, wheezing, anemia, fainting, anorexia, bloating, headache, sinusitis, throat ailments and oligospermia

Somatalgia (1)

Ana. (1)

0.000

76.

Piper nigrum L.

SE132

(Piperaceae)

Miḷaku

Seeds

Hot

Acrid, Carminative, Febrifuge, Rubefacient, Stimulant, Resolvent, Antidote

Somatalgia (1), Anemia (1), Anorexia (1)

Ana. (1), Blo. (1), Gas. (1)

0.000

77.

Plectranthus amboinicus (Lour.) Spreng.

SE143

(Lamiaceae)

Ōmavalli

Leaves

Hot

Stimulant, Diaphoretic, Expectorant

Rhinitis (1), Bronchitis (1)

Kap. (2)

1.000

78.

Portulaca quadrifida L.

SE173

(Portulacaceae)

Ciṟu pacalai

Leaves

Cold

Diuretic, Stomachic, Aphrodisiac, Antibilious

Dysuria (2), Gastric ulcers (2), Hypertension (1), Anemia (1)

Uri. (2), Gas. (2), Hpt. (1), Blo. (1)

0.400

79.

Prunus dulcis (Mill.) D. A. Webb

SE128

(Rosaceae)

Vātumai

Seeds

Cold

Demulcent, Emollient, Nutrient

General weakness (2), Fatigue (1)

Wea. (2), Fat. (1)

0.500

80.

Psidium guajava L.

SE179

(Myrtaceae)

Koyyā

Fruits

Hot

Tonic, Astringent

Hyperacidity (1), Constipation (2), Diabetes (1)

Gas. (3), Dia. (1)

0.666

81.

Punica granatum L.

SE166

(Lythraceae)

Mātuḷai

Fruits

Cold

Astringent, Coolant

Bromhirdosis (1), Hyperacidity (1), Constipation (1), Gastric ulcers (1), Anorexia (2), Wheezing (1), Rheumatalgia (1), To increase vision (1), Hypothyroidism (1)

Gas. (5), Der. (1), Kap. (1), Vad. (1), Eye. (1), Thy. (1)

0.444

82.

Senna auriculata (L.) Roxb.

SE103

(Fabaceae)

Āvārai

Flowers

Cold

Astringent, Tonic, Good to treat Diabetes

Male infertility (1), Lumbago (1), Diabetes (2), Burning sensation (1)

Mal. (1), Vad. (1), Dia. (2), Coo. (1)

0.000

83.

Sesamum indicum L.

SE116

Pedaliaceae

Eḷ

Seeds

Hot

Emmenagogue, Stimulant, Tonic, Diuretic, Lactogogue, Laxative

Male infertility (1), Diabetes (1), Amenorrhea (1)

Mal. (1), Dia. (1), Gyn. (1)

0.000

84.

Sesbania grandiflora (L.) Poiret

SE165

(Fabaceae)

Akatti

Leaves

Cold

Antidote, Coolant, Laxative, Vermifuge

Obesity (1), Gastric ulcers (3), Hemorrhoids (1), Burning sensation (1), Dysuria (1), Hypertension (1)

Gas. (3), Obe. (1), Hem. (1), Coo. (1), Uri. (1), Hpt. (1)

0.285

85.

Setaria italica (L.) P. Beauvois

SE122

(Poaceae)

Tiṉai

Seeds

Hot

Nutrient, Diuretic, Astringent, Appitizer

General weakness (2), Fatigue (1)

Wea. (2), Fat. (1)

0.500

86.

Solanum americanum Mill.

SE158

(Solanaceae)

Maṇattakkāḷi

Leaves

Cold

Alterative, Diuretic, Diaphoretic, Expectorant, To treat mouth ulcers and bronchitis

Menstrual migraine (1), Strength bones (1) and nerves (1), Bronchitis (1), Somatalgia (2), Heart ailments (1), Wheezing (1), Gastric ulcers (2), Mouth ulcers (2), Fever (1), Fatigue (1), Convulsions (1), Headache (1), Liver diseases (1), Jaundice (1), Mumps (1), Cough (1), Dermatological ailments (1), Hypertension (1), Constipation (1)

Gas. (5), Kap. (3), Der. (2), Neu. (2), Ana. (2), Gyn. (1), Bon. (1), Hea. (1), Fev. (1), Fat. (1), Hed. (1), Liv. (1), Jau. (1), Hpt. (1)

0.409

87.

Solanum lycopersicum L.

SE180

(Solanaceae)

Takkāḷi

Fruits

Cold

Tonic, Coolant, To treat anemia

Constipation (1), Heart ailments (1), Diabetes (1), Anorexia (1), Rheumatalgia (1), To increase vision (1)

Gas. (2), Hea. (1), Dia. (1), Vad. (1), Eye. (1)

0.200

88.

Solanum torvum Sw.

SE146

(Solanaceae)

Cuṇṭaikkāy

Dried fruits

Hot

Expectorant, Germicide, Stomachic, To treat bloating, bronchitis, anorexia, intestinal worms and indigestion

Hypotension (1), Heart ailments (1), Bronchitis (1), Anemia (1), Wheezing (1), Diarrhea (1), Diabetes (1)

Kap. (2), Hpo. (1), Hea. (1), Blo. (1), Gas. (1), Dia. (1)

0.166

89.

Solanum trilobatum L.

SE110

(Solanaceae)

Tūtuvaḷai

Leaves

Hot

Stimulant, Expectorant, Tonic, Aphrodisiac, To treat bronchitis, cough and rhinitis

Rhinitis (1), Cough (1), Somatalgia (1), To increase memory (1), Male infertility (2), Oligospermia (1)

Mal. (3), Kap. (2), Ana. (1), Psy. (1)

0.500

90.

Sorghum bicolor (L.) Moench

SE124

(Poaceae)

Veḷḷaiccōḷam

Seeds

Cold

Nutrient, Laxative

General weakness (2), Fatigue (1)

Wea. (2), Fat. (1)

0.500

91.

Spinacia oleracea L.

SE175

Amaranthaceae

Pālakkīrai

Leaves

--

--

Hypertension (1)

Hpt. (1)

0.000

92.

Syzygium cumini (L.) Skeels

SE151

(Myrtaceae)

Nāval

Fruits

Cold

Stomachic, Diuretic, Tonic, Astringent, coolant, To treat polyuria, polydipsia and dysuria

Diabetes (2)

Dia. (2)

1.000

93.

Tamarindus indica L.

SE198

(Fabaceae)

Puḷi

Fruits

Hot

Laxative, To treat vomiting and hypertension

Anorexia (1), Nausea (1)

Gas. (2)

1.000

94.

Trachyspermum ammi Sprague.

SE115

(Apiaceae)

Ōmam

Seeds

Hot

Stomachic, Antispasmodic, Carminative, Antiseptic, Stimulant, Tonic, Sialogogue, to treat Cough, Diarrhea, Wheezing and Toothache

Heart ailments (1), Somatalgia (1)

Hea. (1), Ana. (1)

0.000

95.

Trianthema portulacastrum L.

SE187

(Aizoaceae)

Cāraṇai

Leaves

Hot

Laxative, Diuretic, To treat jaundice, swelling, anemia and bronchitis

Heart ailments (1)

Hea. (1)

0.000

96.

Tribulus terrestris L.

SE196

(Zygophyllaceae)

Ciṟu neruñcil

Leaves

Cold

Coolant, Diuretic, Demulcent, Tonic, Aphrodisiac, Astringent, To treat dysuria, fever, urolithiasis, enlargement of prostate, leucorrhea and polydipsia

Dysuria (2), Oligospermia (2), Burning sensation (1)

Uri. (2), Mal. (2), Coo. (1)

0.500

97.

Trichosanthes cucumerina L.

SE172

(Cucurbitaceae)

Puṭal

Tender fruits

Cold

Coolant, Aphrodisiac

Oliguria (1)

Uri. (1)

0.000

98.

Trigonella foenum-graecum L.

SE163

(Fabaceae)

Ventayam

Seeds

Cold

Coolant, Laxative, Diuretic, Demulcent, Astringent, Emollient, Aphrodisiac, Carminative, Tonic, To treat diarrhea, burning sensation, hypertension, fever, polydipsia and cough

Diabetes (1), Burning sensation (1), Anemia (2)

Blo. (2), Dia. (1), Coo. (1)

0.333

99.

Triticum aestivum L.

SE164

(Poaceae)

Kōtumai

Seeds

Cold

Nutritive, Demulcent, Aphrodisiac, Antirheumatic

Diabetes (1)

Dia. (1)

0.000

100.

Vigna mungo (L.) Hepper

SE144

(Fabaceae)

Uḷuntu

Seeds

Cold

Demulcent, Coolant, Aphrodisiac, Lactogogue, Nervine tonic, Nutritive, Good to strengthen pelvic bones

General weakness (3), Burning sensation (1), Cervicalgia (1), Lumbago (1), Ovulation problems (1), As supplement after puberty (1), Diabetes (1), Anemia (1)

Wea. (3), Vad. (2), Gyn. (2), Coo. (1), Dia. (1), Blo. (1)

0.444

101.

Vitis vinifera L.

SE155

(Vitaceae)

Tirāṭcai

Fruits

Cold

Laxative, Coolant, Diuretic, Nutritive, to treat anemia, bleeding and heart ailments

Male infertility (1), Hypotension (1), Anemia (2), Anorexia (2), Constipation (1), Wheezing (1), Rheumatalgia (1)

Gas. (3), Blo. (2), Mal. (1), Hpo. (1), Kap. (1), Vad. (1)

0.375

102.

Zea mays L.

SE125

(Poaceae)

Makkāccōḷam

Seeds

Cold

Tonic, Aphrodisiac

General weakness (2), Fatigue (1)

Wea. (2), Fat. (1)

0.500

103.

Zingiber officinale Roscoe.

SE131

(Zingiberaceae)

Iñci

Rhizomes

Hot

Carminative, Stomachic, Sialogogue, Digestive, Stimulant, Rubefacient

Somatalgia (1), Bloating (1)

Ana. (1), Gas. (1)

0.000

104.

Ziziphus jujuba Mill.

SE186

(Rhamnaceae)

Ilantai

Fruits

Cold

Astringent, Emollient, Appitizer, Antiemetic

Anorexia (3), Nausea (1), Diabetes (1)

Gas. (4), Dia. (1)

0.750

a - Data taken from siddha materia medica [41, 42]; Values given with in the parentheses indicate the number of UR for the respective illness/illness category

Table 4

List of animal taxa cited by the non-institutionally trained siddha practitioners of Tiruvallur district of Tamil Nadu for preparing medicinal foods

S.No

Binomial name

Vernacular name

Parts used

Humoral propertya

Reported pharmacological action in Siddhaa

Illnesses treated

Illnesses categories

IAR

1.

Anguilla bengalensis bengalensis (J. E. Gray, 1831)

Vilāṅku

Meat

Cold

Aphrodisiac

Fatigue (1), Joint pain (1)

Fat. (1). Vad. (1)

0.000

2.

Bos taurus

Linnaeus, 1758

Pacu

Milk

Cold

To treat fever, internal ulcers, pain, urinary ailments, fatigue and emaciation

To increase memory (1), Burning sensation (2), Oliguria (1), Indigestion (1)

Psy. (1), Coo. (2), Uri. (1), Gas. (1)

0.500

3.

Capra aegagrus hircus

(Linnaeus, 1758)

Veḷḷāṭu

Meat

Cold

Nutritive, Aphrodisiac, To treat fever and tuberculosis

Oligospermia (1), Impotence (1), Gastric ulcers (1), Bone fractures (2)

Mal. (2), Gas. (1), Bon. (2)

0.500

4.

Caranx melampygus Cuvier, 1833

Pāṟai

Meat

--

--

Anabolic (1), Cough (1), Chest pain (1), Wheezing (1), Coolant (1)

Anb. (1), Kap. (2), Hea. (1), Coo. (1)

0.250

5.

Channa spp.

Virāl

Meat

--

--

Anabolic (1), Oligospermia (1), Coolant (1)

Anb. (1), Mal. (1), Coo. (1)

0.000

6.

Chanos chanos (Forsskal, 1775)

Pāl keṇṭai

Meat

Cold

--

Lactogogue (1), Fatigue (1), Impotence (1)

Gyn. (1), Fat. (1), Mal.(1)

0.000

7.

Eleutheronema tetradactylum (Shaw, 1804)

Kālā

Meat

--

--

Impotence (1), Heart diseases (1), Hypertension (1), Urolithiasis (2)

Uri. (2), Mal. (1), Hea. (1), Hpt. (1)

0.250

8.

Euthynnus affinis (Cantor, 1849)

Nīla tuṭuppu cūṟai

Meat

--

--

Fever (1), Cough (2)

Kap. (2), Fev. (1)

0.500

9.

Fenneropenaeus indicus (Milne-Edwards, 1837)

Veḷḷai iṟāl

Meat

Hot

Anabolic, To treat anemia

To improve vision (1), Anabolic (3), Lactogogue (1)

Anb. (3), Eye. (1), Gyn. (1)

0.500

10

Gallus gallus domesticus (Linnaeus, 1758)

Kōḻi

Eggs

Cold

Antirhematic, Aphrodisiac, To treat ulcers and bronchitis

Anemia (2), Bronchitis for children (1)

Blo. (2), Kap. (1)

0.500

11.

Gerres oyena

(Forsskal, 1775)

Uṭuvāṉ

Meat

--

--

Somatalgia (1), Bronchitis (1), Lactogogue (1)

Anb. (1), Kap. (1), Gyn. (1)

0.000

12.

Gibelion catla

(Hamilton, 1822)

Kaṭlā

Meat

Cold

--

Fatigue (2), Somatalgia (1), Impotence (1), Lactogogue (2), To increase vision (1)

Fat. (2), Gyn. (2), Ana. (1), Mal. (1), Eye. (1)

0.333

13.

Himantura uarnak

(Forsskal, 1775)

Tirukkai

Meat

Hot

Aphrodisiac

Somatalgia (1), Wheezing (3)

Kap. (3), Ana. (1)

0.666

14.

Katelysia opima

(Gmelin, 1791)

Cippi

Meat

--

--

Bronchitis (1), Impotence (2)

Mal. (2), Kap. (1)

0.500

15.

Lactarius lactarius

(Bloch & Schneider, 1801)

Cutumpu

Meat

--

--

Chest pain (1)

Hea. (1)

0.000

16.

Lates calcarifer

(Bloch, 1790)

Koṭuvā

Meat

--

--

Rheumatalgia (3), Impotence (1)

Vad. (3), Mal. (1)

0.666

17.

Lebeo rohita

Hamilton, 1822

Kaṇṇādi kendai

Meat

--

--

Somatalgia (1), Heart disease (1), Eye disease (1), Obesity (1)

Ana. (1), Hea. (1), Eye. (1), Obe. (1)

0.000

18.

Monodactylus argenteus (Linnaeus, 1758)

Puraṇṭi

Meat

--

--

Cough (1)

Kap. (1)

0.000

19.

Mystus sp.

Keḷutti

Meat

Cold

Aphrodisiac

Bronchitis (1)

Kap. (1)

0.000

20.

Nemipterus japonicas

(Bloch, 1791)

Caṅkarā

Meat

--

--

Chest pain (1)

Hea. (1)

0.000

21.

Oreochromis mossambicus

(Peters, 1852)

Jilēppi

Meat

--

--

Bronchitis (1), Joint pain (1), Fatigue (1), Lactogogue (1), Chest pain (1)

Kap. (1), Vad. (1), Fat. (1), Gyn. (1), Hea. (1)

0.000

22.

Pampus argenteus (Euphrasen, 1788)

Vavāl

Meat

--

--

Cough (2), Lactogogue (1)

Kap. (2), Gyn. (1)

0.500

23.

Parastromateus niger (Bloch, 1795)

Karuppu vavāl

Meat

Hot

Aprhrodisiac and lactogogue

Wheezing (3), To increase memory (1)

Kap. (3), Psy. (1)

0.666

24.

Parathelphusa hydrodromus (Bloch, 1795)

Cēṟṟu naṇṭu

Meat

Hot

Stimulant, Febrifuge, To treat bronchitis, rheumatism and indigestion

Fever (3)

Fev. (3)

1.000

25.

Parupeneus indicus

(Shaw, 1803)

Nakarai/ mussara

Meat

--

--

Coolant (1)

Coo. (1)

0.000

26.

Portunus sanguinolentus

(Herbst, 1783)

Kaṭal naṇṭu

Meat

Hot

--

Bronchitis (3), Fever (2)

Kap. (3), Fev. (2)

0.750

27.

Rachycentron canadus (Linnaeus, 1766)

Ney mīṉ

Meat

--

--

Good for pregnant women (1), Lactogogue (1)

Gyn. (2)

1.000

28.

Rastrelliger kanagurta (Cuvier, 1816)

Kāṉaṅkattai

Meat

--

--

Bronchitis (3)

Kap. (3)

1.000

29.

Sardinella longiceps

Valenciennes, 1847

Peichālai

Meat

--

--

Anabolic (4), Fatigue (1)

Anb. (4), Fat. (1)

0.750

30.

Scoliodon laticaudus Muller & Henle, 1838

Piḷḷaiccuṟā

Meat

Hot

Appitizer, lactogogue, To treat rheumatism and bronchitis

Lactogogue (7)

Gyn. (7)

1.000

31.

Scomberomorus guttatus (Bloch & Schneider, 1801)

Vañciram

Meat

--

--

Obesity (1), Fatigue (1), Chest pain (1), Rheumatalgia (1)

Obe. (1), Fat. (1), Hea. (1), Vad. (1)

0.000

32.

Sphyraena jello Cuvier in Cuvier & Valenciennes, 1829

Ūḻi

Meat

--

--

Lactogogue (1), Anabolic (2), Coolant (1)

Anb. (2), Gyn. (1), Coo. (1)

0.333

33.

Stolephorus indicus (van Hasselt, 1823)

Nettili

Meat

--

--

Cough (1), Wheezing (2), Lactogogue (2)

Kap. (3), Gyn. (2)

0.750

34.

Stolephorus spp.

--

Meat

--

--

Oligospermia (2)

Mal. (2)

1.000

35.

Thryssa malabarica (Bloch, 1795)

Poruvā

Meat

--

--

Arthritis (1)

Vad. (1)

0.000

36.

Trichiurus lepturus Linnaeus, 1758

Eupleurogrammus muticus (Gray, 1831)

Ōlai vāḷai

Meat

Hot

Appitizer, To treat bronchitis and rheumatism

Giddiness (1), Bronchitis (2), Joint pain (1)

Kap. (2), Hyp. (1), Vad. (1)

0.333

37.

Upeneus sulphureus

Cuvier, 1829

Navarai

Meat

--

--

Joint pain (2)

Vad. (2)

1.000

38.

Uroteuthis duvauceli

(d’Orbigny, 1835)

Ūci kaṉavā

Meat

--

--

Anemia (2), Rheumatalgia (1), Bronchitis (1)

Blo. (2), Vad. (1), Kap. (1)

0.333

a - Data taken from siddha materia medica [43, 44]; Values given with in the parentheses indicate the number of UR for the respective illness/illness category

Figure 3
Fig. 3

Photographs of some animal taxa referred by the non-institutionally trained siddha practitioners of Tiruvallur district for the preparation of medicinal foods. (a) Channa sp. (Virāl); (b) Pampus argenteus (Vavāl); (c) Scomberomorus guttatus (Vañciram); (d) Nemipterus japonicas (Caṅkarā); (e) Oreochromis mossambicus (Jilēppi); (f) Lates calcarifer (Koṭuvā); (g) Trichiurus lepturus (Ōlai vāḷai); (h) Caranx melampygus (Pāṟai); (i) Scoliodon laticaudus (Piḷḷaiccuṟā); (j) Parupeneus indicus (Nakarai); (k) Eleutheronema tetradactylum (Kālā); (l) Sardinella longiceps (Peichālai); (m) Himantura uarnak (Tirukkai); (n) Sphyraena jello (Ūḻi); (o) Stolephorus indicus (Nettili); (p) Fenneropenaeus indicus (Veḷḷai iṟāl); (q) Lebeo rohita (Kaṇṇādi kendai); (r) Parastromateus niger (Karuppu vavāl); (s) Mystus sp. (Keḷutti); (t) Uroteuthis duvauceli (Ūci kaṉavā); (u) Lactarius lactarius (Cutumpu); (v) Portunus sanguinolentus (Kaṭal naṇṭu)

Consensus over the use of plant-based medicinal foods

The illness categories viz., gastrointestinal ailments, hemorrhoids, and neural ailments were considered as illness categories with high consensus since they had higher FIC values than mean plus average FIC value. Sixteen illness categories such as kapha ailments, weakness, urinary, and ailments had average FIC values and were considered as illness categories with average consensus. Eight illness categories such as bone fractures, fatigue, fever, headache, hypotension, hypothyroidism, jaundice, and obesity were considered as illness categories with low consensus (Table 5).
Table 5

FIC values for illness categories treated with plant-based medicinal foods by the non-institutionally trained siddha practitioners in Tiruvallur district

Illness categories

Abbreviations used

N UR

% UR

N t

% T

N C

N VC

F ic

Analgesics

Ana.

18

3.94

14

13.46

14

3

0.235

Anabolic

Anb.

Blood ailments

Blo.

29

6.35

18

17.30

18

8

0.379

Bone fracture

Bon.

2

0.43

2

1.92

2

0

0.000

Coolants

Coo.

18

3.94

14

13.46

14

3

0.235

Dermatological ailments

Der.

5

1.09

4

3.84

4

1

0.250

Diabetes

Dia.

35

7.67

24

23.07

24

6

0.323

Eye ailments

Eye.

9

1.97

8

7.69

8

1

0.125

Fatigue

Fat.

14

3.07

14

13.46

14

0

0.000

Fever

Fev.

2

0.43

2

1.92

2

0

0.000

Gastrointestinal ailments

Gas.

90

19.73

36

34.61

36

26

0.606

Gynecological ailments

Gyn.

20

4.38

13

12.50

13

4

0.368

Headache

Hed.

1

0.21

1

0.96

1

0

0.000

Heart ailments

Hea.

21

4.60

15

14.42

15

4

0.300

Hemorrhoids

Hem.

20

4.38

8

7.69

8

6

0.613

Hypertension

Hpt.

13

2.85

10

9.61

10

3

0.250

Hypotension

Hpo.

8

1.74

8

7.69

8

0

0.000

Hypothyroidism

Thy.

3

0.65

3

2.88

3

0

0.000

Jaundice

Jau.

2

0.43

2

1.92

2

0

0.000

Kapha ailments

Kap.

32

7.01

17

16.34

17

10

0.483

Liver ailments

Liv.

4

0.87

3

2.88

3

1

0.333

Male reproductive ailments

Mal.

28

6.14

21

20.19

21

6

0.259

Neural ailments

Neu.

2

0.43

1

0.96

1

1

1.000

Obesity

Obe.

8

1.74

8

7.69

8

0

0.000

Psychological ailments

Psy.

8

1.74

7

6.73

7

1

0.142

Urinary ailments

Uri.

18

3.94

11

10.57

11

5

0.411

Vadha ailments

Vad.

11

2.41

9

8.65

9

2

0.200

Weakness

Wea.

35

7.67

19

6.50

19

15

0.470

Analgesics

Ana.

4

3.076

4

10.526

4

1

0.000

Anabolic

Anb.

11

8.461

5

13.157

5

2

0.600

Blood ailments

Blo.

4

3.076

2

5.263

2

2

0.666

Bone fracture

Bon.

2

1.538

1

2.613

1

1

1.000

Coolants

Coo.

6

4.615

5

13.157

5

1

0.200

Dermatological ailments

Der.

Diabetes

Dia.

Eye ailments

Eye.

3

2.307

3

7.894

3

0

0.000

Fatigue

Fat.

7

5.384

6

15.789

6

1

0.375

Fever

Fev.

6

4.615

3

7.894

3

2

0.166

Gastrointestinal ailments

Gas.

2

0.769

2

2.613

2

0

0.000

Gynecological ailments

Gyn.

19

14.615

10

26.315

10

4

0.500

Headache

Hed.

Heart ailments

Hea.

7

5.384

7

18.421

7

0

0.000

Hemorrhoids

Hem.

Hypertension

Hpt.

1

1.538

1

5.263

1

0

0.000

Hypotension

Hpo.

Hypothyroidism

Thy.

1

1.538

1

5.263

1

0

0.000

Jaundice

Jau.

Kapha ailments

Kap.

30

23.076

16

44.736

16

9

0.482

Liver ailments

Liv.

Male reproductive ailments

Mal.

11

6.923

8

21.052

8

3

0.714

Neural ailments

Neu.

Obesity

Obe.

2

1.538

2

2.613

2

0

0.000

Psychological ailments

Psy.

2

1.538

2

2.613

2

0

0.000

Urinary ailments

Uri.

3

2.564

2

2.613

2

1

0.500

Vadha ailments

Vad.

11

8.461

8

23.684

9

2

0.222

Weakness

Wea.

NUR number of use reports, % UR % of use reports, Nt number of taxa, % T % of taxa, Nc number of claims, Nvc number of valid claims, no UR and Fic value was not calculated

Consensus over the use of animal-based medicinal foods

Among the illness categories treated with animal-based medicinal foods, kapha ailments had gained high percentage (23.07%) of UR followed by gynecological ailments (14.61%). Nineteen illness categories were reported to be treated with animal-based medicinal foods. Analysis of the consensus showed that the categories viz., bone fractures, male reproductive ailments, blood ailments, and anabolic had high FIC values and were considered as illness categories with high consensus. Seven illness categories such as gynecological, urinary ailments, kapha ailments, fatigue, vadha ailments, coolants, and fever were grouped as illness categories with average consensus (Table 5).

Illness categories treated with plant-based medicinal foods having high consensus

These two illness categories had high FIC scores among the illness categories treated with plant-based medicinal foods. Gastrointestinal ailment is the majorly cited illness category that represented 19.73% of total UR. In this category, 36 plant taxa were used to prepare the medicinal formulations. Among them, 26 taxa had a minimum of two UR for treating gastrointestinal ailments. The taxa such as fruits of Citrus medica (citron), leaves, unripe fruits of Coccinia grandis (ivy gourd), and flowers of Musa paradisiaca (plantain) had high number of UR.

In the case of hemorrhoids, eight plant taxa were used; among them, six taxa had a minimum of two UR. In this category, Allium cepa (onion), Abutilon indicum, Amorphophallus paeoniifolius (elephant foot yam), and plantain had high number of UR and IAR values. In the case of neural ailments, Solanum americanum had high number of UR and was reported to strengthen the nerves (Table 6).
Table 6

List of important plant and animal medicinal food taxa cited by the non-institutionally trained Siddha practitioners of Tiruvallur district, Tamil Nadu, to treat various ailments

Illness categories

Plants

Animals

Analgesics

Cardiospermum halicacabum (0.750), Moringa oleifera (0.470), Solanum americanum (0.409)

Anabolic

Sardinella longiceps (1.000), Fenneropenaeus indicus (0.500), Sphyraena jello (0.333)

Blood ailments

Moringa oleifera (0.470), Beta vulgaris (0.333), Eclipta prostrata (0.400), Eleusine coracana (0.333), Ficus racemosa (0.428), Phyllanthus emblica (0.384), Trigonella foenum-graecum (0.333), Vitis vinifera (0.375)

Gallus gallus domesticus (0.500), Uroteuthis duvauceli (0.333)

Bone fracture

Capra aegagrus hircus (0.333)

Coolants

Borassus flabellifer (0.666), Coccinia grandis (0.692), Cuminum cyminum (0.428)

Bos taurus (0.500)

Dermatological ailments

Solanum americanum (0.409)

Diabetes

Coccinia grandis (0.692), Limonia acidissima (0.750), Abelmoschus esculentus (0.333), Brassica oleracea var. gongylodes (1.000), Marsilea quadrifolia (0.666), Syzygium cumini (1.000)

Eye ailments

Phyllanthus emblica (0.384)

Fatigue

Gibelion catla (0.333)

Fever

Parathelphusa hydrodromus (1.000), Portunus sanguinolentus (0.750)

Gastrointestinal ailments

Citrus medica (0.666), Coccinia grandis (0.692), Musa paradisiaca (0.800) Punica granatum (0.444), Solanum americanum (0.409), Citrus limon (0.400), Murraya koenigii (0.428), Ziziphus jujuba (0.750), Cuminum cyminum (0.428), Ipomoea aquatica (0.750), Mangifera indica (0.666), Phyllanthus emblica (0.384), Psidium guajava (0.666), Sesbania grandiflora (0.285), Vitis vinifera (0.375), Allium sativum (0.250), Citrullus lanatus (0.500), Cocos nucifera (0.333), Cucumis sativus (1.000), Daucus carota (0.333), Digera muricata (1.000), Ficus racemosa (0.428), Momordica charantia (0.500), Portulaca quadrifida (0.400), Solanum lycopersicum (0.200), Tamarindus indica (1.000)

Gynecological ailments

Aloe vera (0.428), Musa paradisiaca (0.800), Moringa oleifera (0.470), Vigna mungo (0.444)

Scoliodon laticaudus (1.000), Gibelion catla (0.333), Rachycentron canadus (1.000), Stolephorus indicus (0.750)

Headache

Heart ailments

Mangifera indica (0.666), Citrus medica (0.666), Hibiscus rosa-sinensis (0.500), Phyllanthus emblica (0.384)

Hemorrhoids

Allium cepa (0.666), Abutilon indicum (1.000), Amorphophallus paeoniifolius (0.666), Cissus quadrangularis (0.400), Musa paradisiaca (0.800), Acalypha indica (0.333)

Hypertension

Citrus medica (0.666), Moringa oleifera (0.470), Oxalis corniculata (0.500)

Hypotension

Hypothyroidism

Jaundice

Kapha ailments

Mukia maderaspatana (1.000), Solanum americanum (0.409), Cardiospermum halicacabum (0.750), Cleome gynandra (0.250), Leucas aspera (0.250), Moringa oleifera (0.470), Plectranthus amboinicus (1.000), Solanum torvum (0.166), Solanum trilobatum (0.500)

Himantura uarnak (0.500), Parastromateus niger (0.666), Rastrelliger kanagurta (1.000), Stolephorus indicus (0.750), Euthynnus affinis (0.500), Pampus argenteus (0.500), Trichiurus lepturus Eupleurogrammus muticus (0.333)

Liver ailments

Eclipta prostrata (0.400)

Male reproductive ailments

Solanum trilobatum (0.500), Allium cepa (0.666), Ficus racemosa (0.428), Ipomoea aquatica (0.750), Mangifera indica (0.666), Tribulus terrestris (0.500)

Capra aegagrus hircus (0.500), Katelysia opima (0.500), Stolephorus spp. (1.000)

Neural ailments

Solanum americanum (0.409)

Obesity

Psychological ailments

Centella asiatica (0.500)

Urinary ailments

Boerhavia diffusa (1.000), Lagenaria siceraria (0.500), Marsilea quadrifolia (0.666), Portulaca quadrifida (0.400), Tribulus terrestris (0.500)

Eleutheronema tetradactylum (0.250)

Vadha ailments

Citrus limon (0.400), Vigna mungo (0.444)

Lates calcarifer (1.000), Upeneus sulphureus (1.0)

Weakness

Vigna mungo (0.444), Amaranthus viridis (0.333), Anacardium occidentale (0.500), Arachis hypogaea (0.500), Cicer arietinum (0.333), Echinochloa frumentacea (0.500), Eleusine coracana (0.333), Oryza sativa (0.250), Panicum sumatrense (0.500), Paspalum scrobiculatum (0.500), Pennisetum glaucum (0.333), Prunus dulcis (0.500), Setaria italica (0.500), Sorghum bicolor (0.500), Zea mays (0.500)

The values mentioned within the parentheses indicate the IAR values. Taxa are arranged in descending order of UR

Illness categories treated with plant-based medicinal foods having average consensus

Kapha (pulmonary and respiratory) ailments gained 7.01% of total UR and 17 taxa. In this category, Mukia maderaspatana had high IAR score and UR. In the case of general weakness, the flour of Vigna mungo seeds (black gram) had high number of UR. The use of Boerhavia diffusa leaves had high UR to treat urinary ailments. The leaves of Moringa oleifera scored high UR under the category of blood ailments for the treatment of anemia. The gel of Aloe vera had high UR under the category of gynecological ailments and given to treat general ailments of uterus, dysmenorrhea, and metrorrhagia. In this category, the flowers and tender fruits of plantain had a high IAR score.

Cooked leaves of Eclipta prostrata were given to treat the liver ailments, and it had high number of UR in this category. In the case of diabetes, the plants such as stems of Brassica oleracea var. gongylodes (kohlrabi) and the fruits of Syzygium cumini had high IAR score. In this category, the leaves and fruits of ivy gourd had high number of UR. The fruits such as mango and citron had high number of UR and IAR score under the category of heart ailments. In the case of male reproductive ailments, the leaves of Ipomoea aquatica (water spinach) and onion had high IAR score; the use of flowers of Solanum trilobatum had high UR. The use of citron had high UR and IAR for the treatment of hypertension. Other important plants under this group were Solanum americanum (dermatological ailments), Cardiospermum halicacabum (analgesics), Borassus flabellifer (coolants), Citrus limon (vadha ailments), Centella asiatica (psychological ailments), and Phyllanthus emblica (eye ailments) (Table 6).

Illness categories treated with animal-based medicinal foods having high consensus

The hoofs of Capra aegagrus hircus (goat) had been given to treat bone fractures. The use of milk and testes of goat, and the meat of Katelysia opima to treat male reproductive ailments had high UR; and the use of Stolephorus meat had high IAR score. The use of Gallus gallus domesticus eggs (chicken) and Uroteuthis duvauceli (Indian squid) had high UR under the category of blood ailments and were used to treat anemia. Sardinella longiceps (Indian oil sardine) and Fenneropenaeus indicus (Indian prawn) had high UR under the anabolics (Table 6).

Illness categories treated with animal-based medicinal foods having average consensus

In the case of gynecological ailments, Scoliodon laticaudus (spade nose shark) had high UR and IAR value; it was reported to increase lactation. In the case of urinary ailments, Eleutheronema tetradactylum (fourfinger threadfin) had high UR and was reported to treat urolithiasis. In the case of kapha ailments, Himantura uarnak (reticulate whipray) had high number of UR; Rastrelliger kanagurta (Indian mackerel) and Stolephorus indicus (Indian anchovy) had high IAR values. In the case of fever, Parathelphusa hydrodromus and Portunus sanguinolentus (blood spotted swimming crab) had high UR and IAR scores. Other important animals under this category were Gibelion catla (catla) to treat fatigue, Lates calcarifer (barramundi) and Upeneus sulphureus to treat vadha ailments, and the buttermilk of Bos taurus (cow) as coolant (Table 6).

Relationship between the humoral properties and illnesses

In the case of plant-based medicinal foods, the RFC for plants with cold humor was comparatively high (64.08%) compared to the plants with cold humor. In animal-based medications, no such variation was found. The illness categories such as analgesics, hemorrhoids, and kapha ailments had comparatively high RFC for plants with hot humor. In the case of animal-based foods, the categories such as fever, gynecological ailments, and kapha ailments have high RFC for plants with hot humor (Table 7).
Table 7

Frequency of URs for illness categories treated with plant and animal medicinal food taxa on the basis of humors

Illness categories

Plant food taxa

Animal food taxa

Hot

Cold

Unspecified

Hot

Cold

Unspecified

Analgesics

72.22

27.78

25

25

50

Anabolic

9.09

90.90

Blood ailments

24.13

68.97

6.90

50

50

Bone fracture

50

50

100

Coolants

11.11

88.89

33.33

66.66

Dermatological ailments

20

80

Diabetes

22.86

71.42

5.72

Eye ailments

33.33

66.67

33.33

33.33

33.33

Fatigue

14.28

78.58

7.14

57.14

42.85

Fever

50

50

83.33

16.66

Gastrointestinal ailments

35.56

62.22

2.22

100

Gynecological ailments

40

60

42.10

15.78

42.10

Headache

0

100

Heart ailments

52.35

42.65

5.00

0

0

100

Hemorrhoids

60

40

Hypertension

0

92.30

7.70

0

0

100

Hypotension

25

50

25

Hypothyroidism

33.33

66.67

100

0

0

Jaundice

0

100

Kapha ailments

59.37

40.63

36.66

6.66

56.66

Liver ailments

50

50

Male reproductive ailments

39.28

50

10.72

0

36.36

63.63

Neural ailments

50

50

Obesity

50

50

0

0

100

Psychological ailments

25

75

50

50

0

Urinary ailments

16.66

83.33

0

33.33

66.66

Vadha ailments

36.37

63.63

9.09

9.09

81.81

Weakness

22.85

71.42

5.73

No UR and frequency was not calculated

CFSI scores of the medicinal foods

List of plant and animal taxa having top ten CFSI scores are given in Table 8, and the CFSI scores for all taxa are given in Additional file 1: Table S2. It showed that the average CFSI score of the plant taxa was higher than that of the animal taxa.
Table 8

List of plant and animal taxa which got top ten CFSI score

Name of the taxa

CFSI

Plants

Solanum americanum

110.28

Murraya koenigii

97.20

Moringa oleifera

95.64

Cuminum cyminum

63.84

Musa paradisiaca

55.68

Coccinia grandis

45.67

Phyllanthus emblica

45.36

Solanum lycopersicum

40.50

Vitis vinifera

40.24

Punica granatum

39.96

Animals

Portunus sanguinolentus

33.75

Sardinella longiceps

29.25

Fenneropenaeus indicus

27.00

Stolephorus indicus

22.50

Bos taurus

19.50

Rastrelliger kanagurta

18.22

Sphyraena jello

16.20

Scoliodon laticaudus

15.75

Himantura uarnak

13.50

Parastromateus niger

13.50

Discussion

In Indian systems of traditional medicine, diet recommendation is an integral and important part of the therapy; it is considered as an ally for strengthening the drug efficacy [46]. However, this knowledge is poorly documented and under-utilized. Our previous studies in other districts of Tamil Nadu also indicated that non-institutional training of siddha system is a male dominant domain [37], and cultural reasons play a vital role on low women’s participation. Such unevenness was also recorded in some ethnobiological studies in other geographical parts [47]. Traditional medicine was often perceived as the healthcare option only for the poor and marginalized communities; a recent work in Nepal indicated that these practices prevailed both in rural and semi-urban areas, and it showed positive correlation with household income and traditional medicine use [48]. The data of this study also indirectly substantiated the previous work by showing relatively high percentage of traditional healers in urban and semi-urban areas.

Sampling sufficiency and the representativeness of the samples collected are considered as major concerns of modern ethnobiology research [49], and various methods are employed to ascertain them. Application of species richness curve was one of the methods, and in this study, it was done by plotting Shannon-Wiener’s index in ordinate axis (y) and cumulative number of UR in abscissa axis (x). Reaching a clear asymptote of the curve was considered as an indicator for the sufficiency of sampling. Comparatively low Shannon-Wiener score for the animal-based foods indicated the lack of diversity in the animal foods than plant foods. The traditional medical literatures of ayurveda and siddha described about the health benefits of animal-based foods; however, the cultural and spiritual beliefs along with better understanding of the nutritional properties of plants caused a preference of vegetarianism in India [50]. Our previous study on ethnodietetics among non-institutionally trained siddha practitioners of Virudhunagar district had also yielded high number of UR for plant-based foods [12]. The same trend was reflected in this survey, and plant taxa got high UR and average IAR values. The CFSI scores for the plant taxa were comparatively higher than that of animal taxa. Our previous surveys in inland of Tamil Nadu showed low UR for fish taxa [12, 51]. In this survey, comparatively better availability of fish taxa caused more UR towards them.

Gastrointestinal ailments are one of the illnesses which got high number of UR in many ethnopharmacological explorations [52]. Food is directly related with various gastrointestinal illnesses, and the use of medicinal foods among subjects with functional gastrointestinal disorders was also high [53, 54]. The use of citron got a high number of UR in this study; it has also been used to treat gastrointestinal ailments in ayurveda and Chinese system of traditional medicine [55]. It has also been used for the treatment of the same in countries such as Nepal [56] and Pakistan [57]. A small clinical study with 37 subjects having recurrent aphthous stomatitis indicated that the application of citrus essential oil alleviated the pain in oral ulcers [58]. Some preliminary scientific experiments on Citrus fruits revealed the effectiveness on Helicobacter pylori [59]. From Citrus fruits, the compounds such as nobiletin [60], hesperidin, neohesperidin [61], β-myrcene [62], limonene, β-pinene [63], and 7,8-dimethoxycoumarin [64] were reported to have gastroprotective effects. Despite its traditional usage in many geographical areas and preclinical evidences, this claim lacks robust clinical data. Preliminary preclinical evidences supported the use of ivy gourd [65] and plantain for the treatment of gastric ulcer [66], but no clinical studies were available. The use of pomegranate was reported for the treatment of gastrointestinal ailments in Mexico [67] and Algeria [68]. Solanum americanum is one of the important plants of Tamil Nadu used to treat gastrointestinal ailments [69], and it is also used to treat gastrointestinal ailments in some other groups [70, 71]. Our previous ethnobotanical explorations had also documented the use of onion, Abutilon indicum, and elephant foot yam to treat hemorrhoids [37, 40, 72]; no scientific validation was reported.

Our previous surveys documented the use of Mukia maderaspatana in treating various pulmonary ailments [37, 40, 51, 72]. Boerhavia diffusa had been used to treat renal illnesses also in other geographic regions, and preclinical investigations showed its nephroprotective and antilithiasis effects [73, 74]. Moringa oleifera leaves are used as a supplement to treat anemia in other regions also [75], and according to a preclinical study, the dietary iron in M. oleifera is reported as superior to ferric citrate [76]. In ayurveda also, Aloe vera has been used to treat various gynecological ailments [77].

Eclipta prostrata is one of the important plants used in Indian as well as Chinese systems of traditional medicine for hepatoprotection [55]. Kohlrabi is an exotic taxon to India; it was not mentioned in the siddha materia medica, but it was prescribed by the informants of this study. Studies on such claims may yield some clues on knowledge transmission about the uses of exotic flora. Antidiabetic effect of Brassica oleracea was reported [78]; the antidiabetic effect of red kohlrabi was found to be superior to the green variety by a preclinical experiment [79]. A randomized, double blind trial with 63 type 2 diabetic subjects showed that the administration of broccoli (a variety of Brassica oleracea) powder at 10 g/day significantly lowered the insulin resistance [80]. Though Syzygium cumini was reported for diabetes by many previous studies, its antidiabetic efficacy was inconclusive [81]. The use of ivy gourd for the treatment of diabetes was also documented in Sri Lanka [82], Bangladesh [83], and Pakistan [84]. A small, double blinded phase I trial with 61 healthy volunteers indicated that consumption of 20 g of ivy gourd leaves significantly lowered the fasting and post-prandial glucose levels [85]. Pretreatment with mangiferin to isoproterenol induced myocardial infarcted rats prevented the alterations in mitochondrial energy metabolism and structural integrity of the heart tissues [86]. Cardioprotective effect of citron was recently reviewed [87]; no clinical reports were available to substantiate the cardioprotective effect of mango and citron supplementation. The use of Citrus fruits for the management of hypertension by Polish migrants in Argentina was already reported [88], and small double-blind, cross-over study with 12 stage I hypertensive patients indicated its usefulness [25]. Two small clinical studies showed the anxiolytic potential of Centella asiatica [89, 90].

The principle of using meat of an organ to treat the illnesses of the similar organ (similia similibus curantur) was reported in previous ethnopharmacological surveys [51, 91]. Previous studies in various geographical locations documented the use of testes and bones of goat to treat male reproductive [92] and bone [93] ailments, respectively. Geographic accessibility was one of the important factors that determined the popularity of zootherapy [94]; this study also represented that the accessibility of marine taxa caused more UR for them among the animal-based foods. Deb and Haque [95] documented the importance of fish taxa in the culture of people in coastal region; however, the ethnopharmacology of fish taxa in India still has to be documented thoroughly. Various medicinal properties of molluscs were recently reviewed [96]; this study documented the use of two molluscs viz., Katelysia opima and Indian squid for the treatment of impotence and anemia, respectively. Indian oil sardine has high ω-3 fatty acid content, high ω-3/ω-6 ratio, eicosapentaenoic acid, and docosahexaenoic acid [97], which may help to gain healthy weight.

The use of spade nose shark to improve lactation had got high UR and IAR under gynecological ailments; however, no scientific report is available to validate this claim. The study by Deb and Haque [95] documented the use of catla as lactogogue, Anguilla bengalensis bengalensis for the treatment of arthritis, and Channa spp., for oligospermia. They also documented reticulate whipray as lactogogue and for the treatment of dysentery; this survey documented its usefulness to treat wheezing and bronchitis.

Conclusions

  • This preliminary report quantitatively documented the food-medicine continuum among the non-institutionally trained siddha practitioners of Tiruvallur district. Collectivistic cultures, influence of traditional norms, and medicinal beliefs caused Indian dietary habits to be very unique; this provides ample scope for further research to anthropologists and ethnobiologists. Deeper studies on different dietary cultures of India may help derive better interpretations on food-medicine continuum.

  • This study identified some important plant-based medicinal claims such as citron, pomegranate and Solanum americanum (gastrointestinal ailments), Abutilon indicum, onions and elephant foot yam (hemorrhoids), Boerhavia diffusa (urinary ailments), Moringa oleifera (anemia), Aloe vera (gynecological ailments), Eclipta prostrata (liver ailments), ivy gourd (diabetes), citron (hypertension), and Centella asiatica (psychological ailments). More studies on these claims will help identify novel functional foods to add to the field of medical nutrition therapy, with traditional brand identity.

  • This study also documented some important marine animal taxa such as spade nose shark (lactogogue), reticulate whipray (wheezing and bronchitis), Katelysia opima (impotence), Indian squid (anemia), and Indian oil sardine (anabolic) for the treatment of various illnesses. Generally, ethnopharmacological validations on ethnozoological claims are very meager and Indian marine resources are still under-utilized. Scientific studies on these claims may yield some novel and affordable functional foods.

  • Documentation of ethnopharmacological knowledge of marine resources is comparatively low in India. Indian coastal line spreads over 7516 km, and robust studies on the documentation of the traditional knowledge on marine resources will yield a good database for various stakeholders and policy makers.

  • Among zootherapy, the use of organs to treat illnesses of similar organs was documented in many instances. Future-specific studies will reveal the cultural and pharmacological importance of this claim.

Abbreviations

AI: 

Availability index

CFSI: 

Cultural Food Significance Index

FIC: 

Informant Consensus Factor

FMRI: 

Food Medicinal Role Index

FUI: 

Frequency of use index

IAR: 

Index of Agreement on Remedies

MFFI: 

Multifunctional food use index

n a

Number of illness categories treated with that taxon

N t

Number of taxa

N ur

Number of UR

n ur

Number of UR registered for taxa

PUI: 

Part used index

QI: 

Quotation index

RFC: 

Relative Frequency of Citation

TSAI: 

Taste Score Appreciation Index

UR: 

Use report

Declarations

Acknowledgements

The authors acknowledge the non-institutionally trained siddha practitioners of Tiruvallur district for sharing their valuable knowledge. The authors thank the three anonymous reviewers for their comments which helped extensively to improve the quality of our manuscript.

Funding

The authors are grateful to Loyola College - Times of India Research Grant (sanction number 7LCTOIERI004) for the partial financial support. We also extend our appreciation to the International Scientific Partnership Program (ISPP) at King Saud University for partially funding this research work through ISPP#0020.

Availability of data and materials

All the data generated in this study are included with this article. Field notebooks and herbarium specimens were available at the museum of Entomology Research Institute, Loyola College, Chennai, Tamil Nadu, 600034, India.

Authors’ contributions

SI, PP, and NAA conceived the idea and designed the study. SE, SD, SM, PP, and MGP were involved in the field study and species confirmation. SE, SI, PP, and NAA processed and analyzed the data and prepared the manuscript. All the authors read and approved the manuscript.

Ethics approval and consent to participate

This study is approved by the Institutional Ethics Committee for Ethnobiological Research (sanction number ERI/IEEC/2014/01). Written informant consent was obtained from all informants who were willing to participate.

Consent for publication

Consent for publication was obtained from the informants.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Authors’ Affiliations

(1)
Division of Ethnopharmacology, Entomology Research Institute, Loyola College, Chennai, India
(2)
International Scientific Partnership Programme, King Saud University, Riyadh, Saudi Arabia
(3)
Addiriyah Chair for Environmental Studies, College of Science, King Saud University, Riyadh, Saudi Arabia

References

  1. Jennings HM, Merrell J, Thompson JL, Heinrich M. Food or medicine? The food-medicine interface in households in Sylhet. J Ethnopharmacol. 2014;167:97–104.View ArticlePubMedGoogle Scholar
  2. Sansanelli S, Ferri M, Salinitro M, Tassoni A. Ethnobotanical survey of wild food plants traditionally collected and consumed in the Middle Agri Valley (Basilicata region, southern Italy). J Ethnobiol Ethnomed. 2017;13:50.View ArticlePubMedPubMed CentralGoogle Scholar
  3. Arnason T, Hebda RJ, Johns T. Use of plants for food and medicine by native peoples of eastern Canada. Can J Bot. 1981;59:2189–325.View ArticleGoogle Scholar
  4. Timothy DJ, Ron AS. Heritage cuisines, regional identity and sustainable tourism. In: Hall CM, Gossling S, editors. Sustainable Culinary Systems: Local Foods, Innovation, Tourism and Hospitality. London: Routledge; 2013. p. 275–90.Google Scholar
  5. Iwu MM. Embrical investigations of dietary plants used in Igbo ethnomedicine. In: Etkin NL, editor. Plants in Indigenous Medicine and Diet. New York: Biobehavioral approaches, Redgrave Publishing Company; 1986. p. 131–50.Google Scholar
  6. Etkin NL, Ross PJ. Should we set a place for diet in ethnopharmacology? J Ethnopharmacol. 1991;32:25–36.View ArticlePubMedGoogle Scholar
  7. Alarcon R, Pardo-de-Santayana M, Priestley C, Morales R, Heinrich M. Medicinal and local food plants in the south of Alava (Basque Country, Spain). J Ethnopharmacol. 2015;176:207–24.View ArticleGoogle Scholar
  8. Towns AM, van Andel T. Wild plants, pregnancy, and the food-medicine continuum in the southern regions of Ghana and Benin. J Ethnopharmacol. 2016;179:375–82.View ArticlePubMedGoogle Scholar
  9. Mohan V, Radhica G, Vijayalakshmi P, Sudha V. Can the diabetes/cardio-vascular disease epidemic in India be explained, at least in part, by excess refined grain (rice) intake? Indian J Med Res. 2010;131:369–72.PubMedGoogle Scholar
  10. Jain A, Rakhi NK, Bagler G. Analysis of food pairing in regional cuisines of India. PLoS One. 2015;10:e0139539.View ArticlePubMedPubMed CentralGoogle Scholar
  11. Sarkar P, Kumar DHL, Dhumal C, Panigrahi SS, Choudhary R. Traditional and ayurvedic foods of Indian origin. J Ethnic Foods. 2015;2:97–109.View ArticleGoogle Scholar
  12. Mutheeswaran S, Esakkimuthu S, Pandikumar P, Ignacimuthu S, Al-Dhabi NA. Quantification of ethnodietetic knowledge among noninstitutionally trained Siddha practitioners of Virudhunagar District, Tamil Nadu, India. J Ethnic Foods. 2016;3:263–9.View ArticleGoogle Scholar
  13. Anonymous. Aṟputa Cintāmaṇi eṉṉum Patārtta Kuṇa Cintāmaṇi (mūlamum uraiyum). Chennai: B. Rathina nayagar & Sons; 1932.Google Scholar
  14. World Health Organization, Food and Agriculture Organization of the United Nations. Diet, Nutrition and the Prevention of Chronic Diseases: Report of a Joint WHO/FAO Expert Consultation (WHO Technical Report Series 916). Geneva: World Health Organization; 2003.Google Scholar
  15. Keatinge JDH, Waliyar F, Jamnadass RH, Moustafa A, Andrade M, Drechsel P, Hughes JA, Kadirvel P, Luther K. Relearning old lessons for the future of food by bread alone no longer: diversifying diets with fruit and vegetables. Crop Sci. 2010;50:S51–62.View ArticleGoogle Scholar
  16. Bigliardi B, Galati F. Innovation trends in the food industry: the case of functional foods. Trends Food Sci Technol. 2013;31:118–29.View ArticleGoogle Scholar
  17. Cencic A, Chingwaru W. The role of functional foods, nutraceuticals, and food supplements in intestinal health. Nutrients. 2010;2:611–25.View ArticlePubMedPubMed CentralGoogle Scholar
  18. Ozen AE, Pons A, Tur JA. Worldwide consumption of functional foods: a systematic review. Nutr Res. 2012;70:472–81.Google Scholar
  19. De Boer A, Hunsel F, Bast A. Adverse food-drug interactions. Regul Toxicol Pharmacol. 2015;73:859–65.View ArticlePubMedGoogle Scholar
  20. Mouly S, Lloret-Linares C, Sellier PO, Sene D, Bergmann JF. Is the clinical relevance of drug-food and drug-herb interactions limited to grapefruit juice and Saint-John’s Wort? Pharmacol Res. 2017;118:82–92.View ArticlePubMedGoogle Scholar
  21. Mutheeswaran S, Pandikumar P, Chellappandian M, Ignacimuthu S, Duraipandiyan V, Logamanian M. Consensus analysis of sastric formulations used by the non-institutionally trained Siddha medical practitioners of Virudhunagar and Tirunelveli districts of Tamil Nadu, India. J Ethnopharmacol. 2014;153:290–6.View ArticlePubMedGoogle Scholar
  22. Zysk KG. Siddha medicine in Tamil Nadu. Kobenhavn: Nationalmuseets Tranquebar Initiative; 2008.Google Scholar
  23. Sebastia B. Governmental Institutions vs. Associations: The Multifaceted Expression of Siddha Medicine in Tamil Nadu. Available from: https://halshs.archives-ouvertes.fr/halshs-00408677/document. Accessed: 02 Nov 2017.
  24. WHO. WHO Country Cooperation Strategy 2006–2011. Supplement on Traditional Medicine. New Delhi: WHO country office for India; 2007.Google Scholar
  25. Esakkimuthu S, Mutheeswaran S, Arvinth S, Gabriel Paulraj M, Pandikumar P, Ignacimuthu S. Quantitative ethnomedicinal survey of medicinal plants given for cardiometabolic diseases by the noninstitutionally trained siddha practitioners of Tiruvallur district, Tamil Nadu, India. J Ethnopharmacol. 2016;186:329–42.View ArticlePubMedGoogle Scholar
  26. Alexiades MN, Sheldon JW, editors. Selected guidelines for ethnobotanical research: a field manual. New York: New York Botanical Gardens; 1996.Google Scholar
  27. Bernard RH. Research Methods in Anthropology. Qualitative and Quantitative Approaches. 4th ed. Walnut Creek: Altamira Press; 2006.Google Scholar
  28. Heinrich M, Edwards S, Moerman DE, Leonti M. Ethnopharmacological field studies: a critical assessment of their conceptual basis and methods. J Ethnopharmacol. 2009;124:1–17.View ArticlePubMedGoogle Scholar
  29. Weckerle CS, de Boer HJ, Puri RK, Andel T, Bussmann RW, Leonti M. Recommended standards for conducting and reporting ethnopharmacological field studies. J Ethnopharmacol. 2018;210:125–32.View ArticlePubMedGoogle Scholar
  30. International Society of Ethnobiology. International Society of Ethnobiology Code of Ethics (with 2008 additions). http://ethnobiology.net/code-of-ethics/. Accessed: 15 Oct 2014.
  31. Gamble JS. The Flora of the Presidency of Madras, vol. I–III (reprinted ed). Dehradun, India: Bishen Singh Mahendhra Pal Singh, 1997.Google Scholar
  32. Nair NC, Henry AN. Flora of Tamil Nadu, India, Vol. I., Botanical Survey of India. Coimbatore: Southern Circle; 1983.Google Scholar
  33. Henry AN, Kumari GR, Chithra V. Flora of Tamil Nadu, India, Vol. II. Botanical Survey of India. Coimbatore: Southern Circle; 1987.Google Scholar
  34. Henry AN, Chithra V, Balakrishnan NP. Flora of Tamil Nadu, India, Vol. III. Botanical Survey of India. Coimbatore: Southern Circle; 1989.Google Scholar
  35. The Plant List; 2010). Version 1.1. Published on the Internet; http://www.theplantlist.org/. Accessed 02 Nov 2017
  36. Kufer J, Forther H, Poll E, Heinrich M. Historical and modern medicinal plant uses-the example of the Ch’orti’ Maya and Ladinos in eastern Guatemala. J Pharm Pharmacol. 2005;57:1127–52.View ArticlePubMedGoogle Scholar
  37. Chellappandian M, Mutheeswaran S, Pandikumar P, Duraipandiyan V, Ignacimuthu S. Quantitative ethnobotany of traditional Siddha medical practitioners from Radhapuram taluk of Tirunelveli District, Tamil Nadu, India. J Ethnopharmacol. 2012;143:540–7.View ArticlePubMedGoogle Scholar
  38. Trotter R, Logan M. Informant consensus: a new approach for identifying potentially effective medicinal plants. In: Etkin NL, editor. Plants in Indigenous Medicine and Diet: Biobehavioural Approaches. Bedfort Hills, NY: Redgrave Publishers; 1986. p. 91–112.Google Scholar
  39. Moerman DE. North American Food and Drug Plants. In: Etkin NL, editor. Eating on the Wild Side. Tucson, Arizona: The University of Arizona Press; 1994. p. 1–21.Google Scholar
  40. Pandikumar P, Chellappandian M, Mutheeswaran S, Ignacimuthu S. Consensus of local knowledge on medicinal plants among traditional healers in Mayiladumparai block of Theni District, Tamil Nadu, India. J Ethnopharmacol. 2011;134:354–62.View ArticlePubMedGoogle Scholar
  41. Mudaliar KSM. Siddha Materia Medica––Plant Kingdom. Chennai, India: Department of Indian Medicine and Homeopathy; 1936.Google Scholar
  42. Pillai CK. Siddha Materia Medica – Plant Kingdom. Chennai, India: B. Rathina nayagar & Sons. 1939.Google Scholar
  43. Pillai CK. Siddha Materia Medica––Animal Kingdom. Chennai, India: B. Rathina nayagar & Sons; 1941.Google Scholar
  44. Thiagarajan R. Siddha Materia Medica––Animal Kingdom. Chennai, India: Department of Indian Medicine and Homeopathy; 1989.Google Scholar
  45. Pieroni A. Evaluation of the cultural significance of wild food botanicals consumed in northwestern Tuscany. Italy J Ethnobiol. 2001;21:89–104.Google Scholar
  46. Sebastia B. Coping with diabetic patients in Tamil Nadu. Case study of two traditional siddha practitioners. 2011 https://hal.archives-ouvertes.fr/file/index/docid/597057/filename/Coping_with_diabetic_patients_in_Tamil_Nadu-version_reviewed.doc. Accessed 02 Nov 2017.Google Scholar
  47. Mati E, De Boer HJ. Trade and commercialization of herbal medicine in the Qaysari market, Kurdish Autonomous Region. Iraq J Ethnopharmacol. 2011;133:490–510.View ArticlePubMedGoogle Scholar
  48. Thorsen RS, Pouliot M. Traditional medicine for the rich and knowledgeable: challenging assumptions about treatment-seeking behaviour in rural and peri-urban Nepal. Health Policy Plan. 2016;31:314–24.View ArticlePubMedGoogle Scholar
  49. Araujo TA, Almeida AL, Melo JG, Medeiros MF, Ramos MA, Silva RR, Almeida CF, Albuquerque UP. A new technique for testing distribution of knowledge and to estimate sampling sufficiency in ethnobiology studies. J Ethnobiol Ethnomed. 2012;8:11.View ArticlePubMedGoogle Scholar
  50. Manohar R, Kessler CS. Ayurveda’s contributions to vegetarian nutrition in medicine. Forsch Komplementmed. 2016;23:89–94.PubMedGoogle Scholar
  51. Chellappandian M, Pandikumar P, Mutheeswaran S, Paulraj MG, Prabakaran S, Duraipandiyan V, Ignacimuthu S, Al-Dhabi NA. Documentation and quantitative analysis of local ethnozoological knowledge among traditional healers of Theni district, Tamil Nadu, India. J Ethnopharmacol. 2014;154:116–30.View ArticlePubMedGoogle Scholar
  52. Kadir MF, Sayeed MSB, Mia MM. Ethnopharmacological survey of medicinal plants used by traditional healers in Bangladesh for gastrointestinal disorders. J Ethnopharmacol. 2013;147:148–56.View ArticlePubMedGoogle Scholar
  53. Acker BW, Cash BD. Medicinal foods for functional GI disorders. Curr Gastroenterol Rep. 2017;19:62.View ArticlePubMedGoogle Scholar
  54. Ciampa BP, Ramos RE, Borum M, Doman DB. The emerging therapeutic role of medical foods for gastrointestinal disorders. Gastroenterol Hepatol (NY). 2017;13:104–15.Google Scholar
  55. Jaiswal Y, Liang Z, Zhao Z. Botanical drugs in Ayurveda and traditional Chinese medicine. J Ethnopharmacol. 2016;194:245–59.View ArticlePubMedGoogle Scholar
  56. Rokaya MB, Uprety Y, Poudel RC, Timsina B, Munzbergova Z, Asselin H, Tiwari A, Shrestha SS, Sigdel SR. Traditional uses of medicinal plants in gastrointestinal disorders in Nepal. J Ethnopharmacol. 2014;158:221–9.View ArticlePubMedGoogle Scholar
  57. Zaidi SF, Muhammad JS, Shahryar S, Usmanghani K, Gilani AH, Jafri W, Sugiyama T. Anti-inflammatory and cytoprotective effects of selected Pakistani medicinal plants in Helicobacter pylori-infected gastric epithelial cells. J Ethnopharmacol. 2012;141:403–10.View ArticlePubMedGoogle Scholar
  58. Kurklu-Gurleyen E, Ogut-Erisen M, Cakir O, Uysal O, Ak G. Quality of life in patients with recurrent aphthous stomatitis treated with a mucoadhesive patch containing citrus essential oil. Patient Prefer Adherence. 2016;10:967–73.View ArticlePubMedPubMed CentralGoogle Scholar
  59. Mandalari G, Bisignano C, Cirmi S, Navarra M. Effectiveness of Citrus Fruits on Helicobacter pylori. Evid Based Complement Altern Med. 2017; Article ID: 8379262.Google Scholar
  60. Li W, Wang X, Zhi W, Zhang H, He Z, Wang Y, Liu F, Niu X, Zhang X. The gastroprotective effect of nobiletin against ethanol-induced acute gastric lesions in mice: impact on oxidative stress and inflammation. Immunopharmacol Immunotoxicol. 2017;39(6):354–63.View ArticlePubMedGoogle Scholar
  61. Hamdan DI, Mahmoud MF, Wink M, El-Shazly AM. Effect of hesperidin and neohesperidin from bittersweet orange (Citrus aurantium var. bigaradia) peel on indomethacin-induced peptic ulcers in rats. Environ Toxicol Pharmacol. 2014;37(3):907–15.View ArticlePubMedGoogle Scholar
  62. Bonamin F, Moraes TM, dos Santos RC, Kushima H, Faria FM, Silva MA Junior IV, Nogueira L, Bauab TM, Brito ARS. The effect of a minor constituent of essential oil from Citrus aurantium: the role of β-myrcene in preventing peptic ulcer disease. Chem Boil Interact. 2014;212:11–9.View ArticleGoogle Scholar
  63. Rozza AL, Moraes TM, Kushima H, Tanimoto A, Marques MOM, Bauab TM, Hiruma-Lima CA, Pellizzon CH. Gastroprotective mechanisms of Citrus lemon (Rutaceae) essential oil and its majority compounds limonene and β-pinene: involvement of heat-shock protein-70, vasoactive intestinal peptide, glutathione, sulfhydryl compounds, nitric oxide and prostaglandin E2. Chem Biol Int. 2011;189(1):82–9.View ArticleGoogle Scholar
  64. Sood S, Muthuraman A, Gill NS, Bali M, Sharma PD. Role of 7, 8-dimethoxycoumarin in anti-secretary and anti-inflammatory action on pyloric ligation-induced gastritis in rats. J Asian Nat Prod Res. 2010;12:593–9.View ArticlePubMedGoogle Scholar
  65. Mazumder PM, Sasmal D, Nambi RA. Antiulcerogenic and antioxidant effects of Coccinia grandis (Linn.) Voigt leaves on aspirin-induced gastric ulcer in rats. Indian J Nat Prod Res. 2008;7(1):15–8.Google Scholar
  66. Rao USM, Ahmad B, Mohd KS, Zin T. Antiulcer activity of Musa paradisiaca (banana) tepal and skin extracts in ulcer induced albino mice. Malaysian J Analytical Sci. 2016;20(5):1203–16.View ArticleGoogle Scholar
  67. Calzada F, Yepez-Mulia L, Aguilar A. In vitro susceptibility of Entamoeba histolytica and Giardia lamblia to plants used in Mexican traditional medicine for the treatment of gastrointestinal disorders. J Ethnopharmacol. 2006;108:367–70.View ArticlePubMedGoogle Scholar
  68. Ouelbani R, Bensari S, Mouas TN, Khelifi D. Ethnobotanical investigations on plants used in folk medicine in the regions of Constantine and Mila (North-East of Algeria). J Ethnopharmacol. 2016;194:196–218.View ArticlePubMedGoogle Scholar
  69. Jain RAS, Gupta SSPI, Gabrani R. Solanum nigrum: current perspectives on therapeutic properties. Altern Med Rev. 2011;16:78–85.PubMedGoogle Scholar
  70. Nasab KF, Khosravi AR. Ethnobotanical study of medicinal plants of Sirjan in Kerman Province, Iran. J Ethnopharmacol. 2014;154:190–7.View ArticleGoogle Scholar
  71. Johns T, Faubert GM, Kokwaro JO, Mahunnah RL, Kimanani EK. Anti-giardial activity of gastrointestinal remedies of the Luo of East Africa. J Ethnopharmacol. 1995;46:17–23.View ArticlePubMedGoogle Scholar
  72. Mutheeswaran S, Pandikumar P, Chellappandian M, Ignacimuthu S. Documentation and quantitative analysis of the local knowledge on medicinal plants among traditional Siddha healers in Virudhunagar district of Tamil Nadu, India. J Ethnopharmacol. 2011;137:523–33.View ArticlePubMedGoogle Scholar
  73. Kasote DM, Jagtap SD, Thapa D, Khyade MS, Russell WR. Herbal remedies for urinary stones used in India and China: a review. J Ethnopharmacol. 2017;203:55–68.View ArticlePubMedGoogle Scholar
  74. Patil KS, Bhalsing SR. Ethnomedicinal uses, phytochemistry and pharmacological properties of the genus Boerhavia. J Ethnopharmacol. 2016;182:200–20.View ArticlePubMedGoogle Scholar
  75. Gopalakrishnan L, Doriya K, Kumar DS. Moringa oleifera: a review on nutritive importance and its medicinal application. Food Sci Human Wellness. 2016;5:49–56.View ArticleGoogle Scholar
  76. Saini RK, Manoj P, Shetty NP. Dietary iron supplements and Moringa oleifera leaves influence the liver hepcidin messenger RNA expression and biochemical indices of iron status in rats. Nutr Res. 2014;34:630–8.View ArticlePubMedGoogle Scholar
  77. Jadhav AN, Bhutani KK. Ayurveda and gynecological disorders. J Ethnopharmacol. 2005;97:151–9.View ArticlePubMedGoogle Scholar
  78. Maggioni L, Bothmer R, Poulsen G, Lipman E. Domestication, diversity and use of Brassica oleracea L., based on ancient Greek and Latin texts. Genet Resour Crop Evol. 2018;65:137–59.View ArticleGoogle Scholar
  79. Jung HA, Karki S, Ehom N, Yoon M, Kim EJ, Choi JS. Anti-diabetic and anti-inflammatory effects of green and red kohlrabi cultivars (Brassica oleracea var. gongylodes). Prev Nutr Food Sci. 2014;19:281–90.View ArticlePubMedPubMed CentralGoogle Scholar
  80. Bahadoran Z, Tohidi M, Nazeri P, Mehran M, Azizi F, Mirmiran P. Effect of broccoli sprouts on insulin resistance in type 2 diabetic patients: a randomized double-blind clinical trial. Int J Food Sci Nutr. 2012;63:767–71.View ArticlePubMedGoogle Scholar
  81. Teixeira CC, Fuchs FD, Weinert LS, Esteves J. The efficacy of folk medicines in the management of type 2 diabetes mellitus: results of a randomized controlled trial of Syzygium cumini (L.) Skeels. J Clin Pharm Ther. 2006;31(1):1–5.View ArticlePubMedGoogle Scholar
  82. Sathasivampillai SV, Rajamanoharan PRS, Munday M, Heinrich M. Plants used to treat diabetes in Sri Lankan Siddha Medicine––an ethnopharmacological review of historical and modern sources. J Ethnopharmacol. 2017;198:531–99.View ArticlePubMedGoogle Scholar
  83. Kadir MF, Bin Sayeed MS, Shams T, Mia MM. Ethnobotanical survey of medicinal plants used by Bangladeshi traditional health practitioners in the management of diabetes mellitus. J Ethnopharmacol. 2012;144:605–11.View ArticlePubMedGoogle Scholar
  84. Yaseen G, Ahmad M, Zafar M. Traditional management of diabetes in Pakistan: ethnobotanical investigation from traditional health practitioners. J Ethnopharmacol. 2015;174:91–117.Google Scholar
  85. Munasinghe MA, Abeysena C, Yaddehige IS, Vidanapathirana T, Piyumal KP. Blood sugar lowering effect of Coccinia grandis (L.) J. Voigt: path for a new drug for diabetes mellitus. Exp Diabetes Res. 2011; Article ID: 978762.Google Scholar
  86. Prabhu S, Jainu M, Sabitha KE, Devi CSS. Effect of mangiferin on mitochondrial energy production in experimentally induced myocardial infarcted rats. Vasc Pharmacol. 2006;44:519–25.View ArticleGoogle Scholar
  87. Chhikara N, Kour R, Jaglan S, Gupta P, Gata Y, Panghal A. Citrus medica: nutritional, phytochemical composition and health benefits––a review. Food Funct. 2018;9:1978–92.View ArticlePubMedGoogle Scholar
  88. Kujawska M, Pieroni A. Plants used as food and medicine by polish migrants in Misiones, Argentina. Ecol Food Nutr. 2015;54:255–79.View ArticlePubMedGoogle Scholar
  89. Bradwejn J, Zhou Y, Kosycki D, Shlik J. A double blind, placebo-controlled study on the effects of Gotu Kola (Centella asiatica) on acoustic startle response in healthy subjects. J Clin Psychopharmacol. 2000;20:680–4.View ArticlePubMedGoogle Scholar
  90. Jana U, Sur TK, Maity LN. A clinical study on the management of generalized anxiety disorder with Centella asiatica. Nepal Med Coll J. 2010;12:8–11.PubMedGoogle Scholar
  91. Gonzalez JA, Vallejo JR. The scorpion in Spanish folk medicine: a review of traditional remedies for stings and its use as a therapeutic resource. J Ethnopharmacol. 2013;146:62–74.View ArticlePubMedGoogle Scholar
  92. Kim G, Kim H, Song M-J. Ethnopharmacological implications of quantitative and network analysis for traditional knowledge regarding the medicinal use of animals by indigenous people in Wolchulsan National Park, Korea. J Ethnopharmacol. 2018;213:1–11.View ArticlePubMedGoogle Scholar
  93. Mootoosamy A, Mahomoodally MF. A quantitative ethnozoological assessment of traditionally used animal-based therapies in the tropical island of Mauritius. J Ethnopharmacol. 2014;154:847–57.View ArticlePubMedGoogle Scholar
  94. Alves RRN, Rosa IL. Zootherapeutic practices among fishing communities in North and Northeast Brazil: a comparison. J Ethnopharmacol. 2007;111:82–103.View ArticlePubMedGoogle Scholar
  95. Deb AK, Haque CE. Every mother is a mini-doctor: ethnomedicinal uses of fish, shellfish and some other aquatic animals in Bangladesh. J Ethnopharmacol. 2011;134:259–67.View ArticlePubMedGoogle Scholar
  96. Ahmad TB, Liu L, Kotiw M, Benkendorff K. Review of anti-inflammatory, immune-modulatory and wound healing properties of molluscs. J Ethnopharmacol. 2018;210:156–78.View ArticlePubMedGoogle Scholar
  97. Mohanty BP, Mahanty A, Ganguly S, Mitraa T, Karunakarana D, Anandan R. Nutritional composition of food fishes and their importance in providing food and nutritional security. Food Chem. 2017; https://doi.org/10.1016/j.foodchem.2017.11.039.

Copyright

© The Author(s). 2018

Advertisement