The Tehuacán Valley has been recognized because of its outstanding biocultural diversity. Its territory, 10,000 km2 extent, is inhabited by eight indigenous ethnic groups: the Mixtec, Nahua, Chocho, Popoloca, Mazatec, Ixcatec, Chinantec, and the Cuicatec [1]. In addition, this region harbors a high biodiversity. Researchers have reported more than 3000 species of vascular plants [2], and although information on fauna is still limited [3], the partial information available for some groups reveals that diversity of animals is also remarkable. For instance, Brailovsky et al. [4, 5] reported 24 species of the hemipteran Coreidae, Ayala et al. [6] recorded 36 species of bees, and Ríos-Casanova et al. [7] registered 28 species of ants. For vertebrates, Canseco and Gutiérrez-Mayén [8] reported 32 and 117 species of amphibians and reptiles, respectively, whereas Arizmendi and Espinoza de los Montero [9] and Arizmendi and Valiente-Banuet [10] recorded 150 species of birds, and Téllez-Valdés et al. [11] 98 species of mammals. The fauna inventory of the region has substantially increased during the last 15 years, but it is far to be complete. Ethnozoological information is even scarcer, and it is a research priority [2, 3, 12], since information from this field will be necessary for an integral understanding of regional cultural and ecological issues. It would be crucial for planning conservation strategies and for controlling factors that affect animal populations and determine risk to their permanence in the region [1, 3, 9, 12, 13]. Among other issues, it is relevant for the evaluation and regulation of hunting and extraction of some species [1, 3, 12, 13], protecting bats from disturbance and irresponsible policies for controlling cattle rabies [1, 3, 11,12,13], as well as protecting numerous species of pollinators against the uncontrolled use of pesticides [1, 3, 13].
The long history of interactions between humans and animals in the region [1,2,3] is currently reflected in a deep indigenous knowledge of diversity, properties, benefits, damages, interactions, symbolism, myths and customs, practices for using them, and for promoting or controlling their abundance [14]. All these aspects are main expressions of the traditional ecological knowledge (TEK) of peoples of the area. Documenting and understanding human culture in relation to the TEK, management and worldviews in relation to animals are main goals of ethnozoology.
Archeological studies in the Tehuacán Valley allowed reconstructing the most complete stratigraphic chronology of the prehistory of Mesoamerica [15, 16]. These studies revealed that during the early occupation of the region by humans, hunting was the main activity and, even after the extinction of the megafauna, people continued being mainly hunters. They then combined their subsistence with progressively more intense gathering of plants and, eventually, domestication of some plant species [2]. Among the earliest remains of animals associated to human subsistence are those identified by Flannery [17] (Appendix). TEK about fauna, management techniques, and the role of animals in worldviews are all aspects for establishing important bases for sustainable use and conservation of fauna in the region [1,2,3, 12].
Animals are primary sources of food, but they also provide medicines and other goods [18, 19]. Documenting use of animals in the Tehuacán Valley is one of our main concerns in this and other on-going studies, but in addition, the forms and intensities of management interactions local people establish with fauna and the reason of the intensity of such interactions that may include from simple gathering to domestication [14].
Animals are fundamental components of natural ecosystems and responsible of crucial functions like herbivory, predation, pollination, seed dispersal, degradation of organic matter, soil removal and aeration, among others. Animals have therefore provided important resources and environmental benefits to humans. Numerous species of arthropods and vertebrates are used as food by peoples throughout the world [20]; others are medicines [21], ornamental, and raw matter for handcrafts [22,23,24]. Thousands are important pollinators, seed dispersers, or pest-controlling agents of crops [25,26,27]. Many species determine risks to human health since they are parasites, and vectors of dangerous illnesses [28], while others cause conflicts because they consume crops or predate domestic animals [29,30,31].
It is currently recognized that animals are and will be important in programs of food security and sovereignty [32], which are priority topics of research for the contemporary global science [33], and ethnobiology has a high promising value for inventorying food and techniques that can be potentially included in this task. But studying management of animals has theoretical importance. Our research team has constructed theory about factors influencing different states and intensities of interactions between people and plants. In those studies, we identified simple, planned, and selective gathering, let standing of desirable species and phenotypes when clearing areas for agriculture, enhancing, transplanting, and cultivation of plants through vegetative propagules or seeds, and domestication involving intensive human selection [1, 2]. Those studies aspire contributing to understand factors explaining routes to domestication and origins of agriculture. But in Mesoamerica, animals, fungi, and microbiota have been also managed by humans. Understanding forms of interactions between humans and different groups of organisms and the factors influencing such interactions are therefore important topics for understanding agriculture [1, 2, 34, 35].
Numerous ethnobiological studies have investigated and constructed theories about how peoples of the world practice hunting, gathering, nurturing, husbandry, and domestication of plant and animal resources [14, 22,23,24, 34, 35]. Wild animal resources directly used, but also interchanged and traded [24, 36]. Frequently, rural people have been blamed to be responsible of decreasing forest cover and fauna populations; however, it is now clear that the most powerful processes destroying natural ecosystems at global scale are the industrial processes of production in both rural and urban areas and that these have been particularly accelerated after the 1940s [37]. Currently, it has been recognized that several species are endangered because of hunting [38] and over-exploitation of some species due to their medicinal use. However, these are particularly the cases of perverse nets of trading mafias rather than practices for rural subsistence [36, 39, 40]. Deforestation, the exponential increasing of grasslands, the intensification of agriculture through chemical inputs, the expansion of urban areas, and the dangerous excretions of industries are all the most significant causes of the global change and degradation of the natural ecosystems over the world [23, 41, 42]. Conservation policies are unable of controlling the huge destruction of ecosystems by industry, but paradoxically, some conservationists deny the possibilities of obtaining benefits of traditional cultural importance associated to using biodiversity and ecosystems for satisfying basic needs of indigenous peoples [20]. Therefore, understanding the way local peoples use and maintain ecosystems is nowadays a crucial issue for conservation. Documenting traditional knowledge, use, and management of natural resources provides not only information about actual and potential resources for solutions of global problems such as food security, but in addition, valuable techniques of sustainable management for ensuring the maintenance of biodiversity and ecosystems [1, 13].
Traditional ecological knowledge of Mesoamerican peoples is among the most remarkable, because of their long history and the high diversity of contexts, from Mexico to Costa Rica [43], with peoples that have historically based their subsistence on agriculture, use of non-timber forest products, and raising of animals. The latter activity has increased its importance after the Spanish Conquest. The traditional Mesoamerican systems of subsistence have elements in common, but particularities marked by their ecological, cultural, and historical contexts [12]. One common characteristic among the Mesoamerican cultures is the extended practice of entomophagy, apparently more marked than in other regions of the Americas, where animal proteins in food were obtained from hunting (like in North America and the Amazonia), or from a more developed pastoralism and raising of animals like in the Andean region [14, 44]. Wild animals and insects and other arthropods have been part of diet of Mesoamerican peoples, who consider them healthy, tasty, and nutritious, since they are sources of good quality protein [20].
Our study focused on a Mesoamerican culture, the Cuicatec, which inhabit the southeast of the Tehuacán-Cuicatlán Valley [45]. The Cuicatec is an Otomanguean language closely related with the Mixtec [46]. It is one of the least known indigenous peoples of Mexico, and one of the least studied from ethnobiological approaches. This is in part due to their isolation, since the Cuicatec villages are 2 to 5 h through rustic roads from the main town Cuicatlán, and these rustic roads were inexistent 35 years ago. In addition, the Cuicatec are distributed in a relatively small area (17 villages) with few people (nearly 13,000 people in total) compared with other indigenous groups of Mexico [47, 48].
We documented knowledge, use, and forms of interaction and management of animals by the Cuicatec of the village of San Lorenzo Pápalo, Oaxaca. Our previous studies in the region [1, 45] documented that domestic animals are mainly a way of saving money for households which are sold in cases of emergency or consumed during feasts. Therefore, wild fauna should play an important role in the daily life diet and intake of animal protein. We expected to find a gradient of interactions from simple forms of gathering and hunting to husbandry and domestication. We hypothesized that wild animals still have significant contributions in diet, medicine, and spiritual life of the Cuicatec. In addition, we expected to find a gradient of management intensity from simple gathering and hunting with no procurement nor care of animals, to communitarian regulations for use strategies, management techniques, special care and husbandry, and domestication. We supposed that intensity of interactions would be proportional to their cultural and economic value, the ease to maintain them in human-controlled areas, their scarcity, and uncertainty in their availability.